Skip to main content
Log in

C/EBPβ and CHOP participate in Tanshinone IIA-induced differentiation and apoptosis of acute promyelocytic leukemia cells in vitro

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Our studies indicated that Tanshinone IIA (TanIIA), which is widely applied in the treatment of cardiovascular diseases with a rare occurrence of side effects, could promote APL cell differentiation and apoptosis. We found TanIIA induced the differentiation of NB4 and MR2 cells with elevated C/EBPβ and CHOP. When C/EBPβ was overexpressed in NB4 cells, the level of CD11b in the transfected cells was significantly elevated. When we used CHOP siRNA to suppress CHOP expression in NB4 cells and then treated these cells with a high concentration of TanIIA, the differentiation and apoptosis of these cells were both significantly increased. These data demonstrate that C/EBPβ is critical for APL cell differentiation and apoptosis induced by TanIIA, and that CHOP acts as a negative regulator of C/EBPβ activity. Our study suggested that TanIIA is a promising drug for treating newly diagnosed and ATRA-resistant APL, and a high concentration of TanIIA associated with inhibition of CHOP, maybe a potentially promising therapy strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. de The′ H, Chomienne C, Lanotte M, Degos L, Dejean A. The t (15; 17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature. 1990;347:558–61.

    Article  Google Scholar 

  2. Chen GQ, Zhu J, Shi XG, Zhong HJ, Si GY, Jin XL, et al. In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML proteins. Blood. 1996;88:1052–61.

    CAS  PubMed  Google Scholar 

  3. Huang ME, Ye YC, Chen SR, Chai JR, Lu JX, Zhoa L, et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood. 1988;72:567–72.

    CAS  PubMed  Google Scholar 

  4. Sanz MA, Martin G, Gonzalez M, León A, Rayón C, Rivas C, et al. Risk-adapted treatment of acute promyelocytic leukemia with all-trans-retinoic acid and anthracycline monochemotherapy: a multicenter study by the PETHEMA group. Blood. 2004;103:1237–43.

    Article  CAS  PubMed  Google Scholar 

  5. Mathews V, George B, Lakshmi KM, Viswabandya A, Bajel A, Balasubramanian P, et al. Single-agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: durable remissions with minimal toxicity. Blood. 2006;107:2627–32.

    Article  CAS  PubMed  Google Scholar 

  6. Liu YF, Zhu YM, Shi ZZ, Li JM, Wang L, Chen Y, et al. Long-term follow-up confirms the benefit of all-trans retinoic acid (ATRA) and arsenic trioxide (As2O3) as front line therapy for newly diagnosed acute promyelocytic leukemia. Blood. 2006;108:170.

    Google Scholar 

  7. De Botton S, Dombret H, Sanz M, Miguel JS, Caillot D, Zittoun R, et al. Incidence, clinical features, and outcome of all trans-retinoid acid syndrome in 413 cases of newly diagnosed acute promyelocytic leukemia. Blood. 1992;8:2712–8.

    Google Scholar 

  8. Ohnishi K, Yoshida H, Shigeno K, Nakamura S, Fujisawa S, Naito K, et al. Prolongation of the QT Interval and Ventricular Tachycardia in Patients Treated with Arsenic Trioxide for Acute Promyelocytic Leukemia. Ann Intern Med. 2000;133:881–5.

    CAS  PubMed  Google Scholar 

  9. Li QF, Shi SL, Liu QR, Tang J, Song J, Liang Y. Anticancer effects of ginsenoside Rg1, cinnamic acid, and tanshinone IIA in osteosarcoma MG-63 cells: nuclear matrix downregulation and cytoplasmic trafficking of nucleophosmin. Int J Biochem Cell Biol. 2008;40:1918–29.

    Article  CAS  PubMed  Google Scholar 

  10. Su CC, Lin YH. Tanshinone IIA down-regulates the protein expression of ErbB-2 and up-regulates TNF-alpha in colon cancer cells in vitro and in vivo. Int J Mol Med. 2008;22:847–51.

    CAS  PubMed  Google Scholar 

  11. Wang AM, Sha SH, Lesniak W, Schacht J. Tanshinone (Salviae miltiorrhizae extract) preparations attenuate aminoglycoside-induced free radical formation in vitro and ototoxicity in vivo. Antimicrob Agents Chemother. 2003;47:1836–41.

    Article  CAS  PubMed  Google Scholar 

  12. Liu Y, Wang X, Liu Y. Protective effects of tanshinone IIA on injured primary cultured rat hepatocytes induced by CCl4. Zhong Yao Cai. 2003;26:415–7.

    PubMed  Google Scholar 

  13. Yang YM, Yuan SL, Liu T. Study on anti-leukemia effect of tanshinone IIA in vitro and in vivo to acute promyelocytic leukemia. Blood. 1999;94:595.

    Google Scholar 

  14. Ramji DP, Foka P. CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J. 2002;365:561–75.

    CAS  PubMed  Google Scholar 

  15. Seagroves TN, Krnacik S, Raught B, Gay J, Burgess-Beusse B, Darlington GJ, et al. C/EBP, but not C/EBP, is essential for ductal morphogenesis, lobuloalveolar proliferation, and functional differentiation in the mouse mammary gland. Genes Dev. 1998;12:1917–28.

    Article  CAS  PubMed  Google Scholar 

  16. Scott LM, Civin CI, Roth P, Friedman AD. A novel temporal expression pattern of three C/EBP family members in differentiating myelomonocytic cells. Blood. 1992;80:1725–35.

    CAS  PubMed  Google Scholar 

  17. Gery S, Park DJ, Vuong PT, Chih DY, Lemp N, Koeffler HP. Retinoid acid regulates C/EBP homologous protein expression (CHOP), which negatively regulates myeloid genes. Blood. 2004;104:3911–7.

    Article  CAS  PubMed  Google Scholar 

  18. Duprez E, Wagner K, Koch H, Tenen DG. C/EBPβ: a major PML-RARA-responsive gene in retinoic acid-induced differentiation of APL cell. EMBO J. 2003;22:5806–16.

    Article  CAS  PubMed  Google Scholar 

  19. Yamaguchi H, Wang HG. CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J Biol Chem. 2004;279:45495–502.

    Article  CAS  PubMed  Google Scholar 

  20. Tiscornia G, Singer O, Verma IM. Production and purification of lentiviral vectors. Nat Protoc. 2006;1:241–5.

    Article  CAS  PubMed  Google Scholar 

  21. Sun SY, Liu X, Zou W, Yue P, Marcus AI, Khuri FRT. The farnesyltransferase inhibitor lonafarnib induces CCAAT/enhancer-binding protein homologous protein-dependent expression of death receptor 5, leading to induction of apoptosis in human cancer cells. J Biol Chem. 2007;282:18800–9.

    Article  CAS  PubMed  Google Scholar 

  22. Popermack PM, Truong LT, Kamphuis M, Henderson AJ. Ectopic expression of CCAAAT/enhancer binding proteinβ (C/EBPβ) in long-term bone marrow cultures induces granulopoiesis and alters stromal cell function. J Hematother Stem Cell Res. 2001;10:631–42.

    Article  Google Scholar 

  23. Ron D, Habener JF. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev. 1992;6:439–53.

    Article  CAS  PubMed  Google Scholar 

  24. Lee YJ, Jones LC, Timchenko NA, Perrotti D, Tenen DG, Kogan SC. CCAAT/enhancer binding proteins alpha and epsilon cooperate with all-trans retinoic acid in therapy but differ in their antileukemic activities. Blood. 2006;108:2416–9.

    Article  CAS  PubMed  Google Scholar 

  25. Ding W, Li YP, Nobile LM, Grills G, Carrera I, Paietta E, et al. Leukemic cellular retinoic acid resistance and missense mutations in the PML-RARα fusion gene after relapse of acute promyelocytic leukemia from treatment with all-trans retinoic acid and intensive chemotherapy. Blood. 1998;92:1172–83.

    CAS  PubMed  Google Scholar 

  26. Descombes P, Schibler U. A liver-enriched transcriptional activator protein, LAP, and a transcriptional inhibitory protein, LIP, are translated from the same mRNA. Cell. 1991;67:569–79.

    Article  CAS  PubMed  Google Scholar 

  27. Calkhoven CF, Muller C, Leutz A. Translational control of C/EBPα and C/EBPβ isoform expression. Genes Dev. 2000;14:1920–32.

    CAS  PubMed  Google Scholar 

  28. Zahnow CA, Cardiff RD, Laucirica R, Medina D, Rosen JM. A role for CCAAT/enhancer binding protein β-liver-enriched inhibitory protein in mammary epithelial cell proliferation. Cancer Res. 2001;61:261–9.

    CAS  PubMed  Google Scholar 

  29. Sakurai T, Ohta T, Fujiwara K. Inorganic arsenite alters macrophage generation from human peripheral blood monocytes. Toxicol Appl Pharmacol. 2005;203:145–53.

    Article  CAS  PubMed  Google Scholar 

  30. Kim EH, Yoon MJ, Kim SU, Kwon TK, Sohn S, Choi KS. Arsenic trioxide sensitizes human glioma cells, but not normal astrocytes, to TRAIL-induced apoptosis via CCAAT/enhancer-binding protein homologous protein-dependent DR5 up-regulation. Cancer Res. 2008;68:266–75.

    Article  CAS  PubMed  Google Scholar 

  31. Chen GQ, Shi XG, Tang W, Xiong SM, Zhu J, Cai X, et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cell. Blood. 1997;89:3345–53.

    CAS  PubMed  Google Scholar 

  32. Schrem H, Klempnauer J, Borlak J. Liver-enriched transcription factors in liver function and development. Part II: The C/EBPs and D site-binding protein in cell cycle control, carcinogenesis, circadian gene regulation, liver regeneration, apoptosis, and liver-specific gene regulation. Pharmacol Rev. 2004;56:291–330.

    Article  CAS  PubMed  Google Scholar 

  33. Cheng WP, Hung HF, Wang BW, Shyu KG. The molecular regulation of GADD153 in apoptosis of cultured vascular smooth muscle cells by cyclic mechanical stretch. Cardiovasc Res. 2008;77:551–9.

    Article  CAS  PubMed  Google Scholar 

  34. Altucci L, Rossin A, Raffelsberger W, Reitmair A, Chomienne C, Gronemeyer H. Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL. Nat Med. 2001;7:680–6.

    Article  CAS  PubMed  Google Scholar 

  35. Choi WT, Folsom MR, Azim MF, et al. C/EBPβ suppression by interruption of CUGBP1 resulting from a complex rearrangement of MLL. Cancer Genet Cytogenet. 2007;177(2):108–14.

    Article  CAS  PubMed  Google Scholar 

  36. Guerzoni C, Bardini M, Mariani SA, et al. Inducible activation of CEBPB, a gene negatively regulated by BCR/ABL, inhibits proliferation and promotes differentiation of BCR/ABL-expressing cells. Blood. 2006;107(10):4080–99.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Xianming Mo and the Laboratory of Stem Cell Biology for their assistance. This work was supported by grants from the National Natural Science Foundation of China (No. 30470748) and the National Basic Research Program of China (No. 2007CB947802).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiming Yang.

About this article

Cite this article

Zhang, K., Li, J., Meng, W. et al. C/EBPβ and CHOP participate in Tanshinone IIA-induced differentiation and apoptosis of acute promyelocytic leukemia cells in vitro. Int J Hematol 92, 571–578 (2010). https://doi.org/10.1007/s12185-010-0686-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-010-0686-6

Keywords

Navigation