Skip to main content
Log in

Lateral Mobility of E-Cadherin Enhances Rac1 Response in Epithelial Cells

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

The fluidity of cellular membranes imparts lateral mobility of proteins across the cell surface. To understand the impact of lateral mobility on cell–cell communication, a protein consisting of the extracellular recognition domains of E-cadherin was associated with the surface of silica beads by either tethering to a bead-supported lipid bilayer or direct adsorption, resulting in laterally mobile and immobile presentations of this protein. These beads were then seeded onto the upper surface of MDCK cells. Functional engagement of these beads was compared by measurement of Rac1 recruitment around the bead. Lateral mobility enhanced recognition of E-cadherin, promoting cell response to the beads at lower per-area concentrations than their immobilized counterparts. A more complete understanding of how lateral mobility of membrane-associated proteins influences molecular recognition, and potentially other downstream responses, could provide new strategies for the design of materials and devices intended to capture the architecture of natural tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Adams, C. L., Y. T. Chen, S. J. Smith, and W. J. Nelson. Mechanisms of epithelial cell–cell adhesion and cell compaction revealed by high-resolution tracking of E-cadherin-green fluorescent protein. J. Cell Biol. 142:1105–1119, 1998.

    Article  Google Scholar 

  2. Boxer, S. G. Molecular transport and organization in supported lipid membranes. Curr. Opin. Chem. Biol. 4:704–709, 2000.

    Article  Google Scholar 

  3. Brian, A. A., and H. M. McConnell. Allogeneic stimulation of cytotoxic T cells by supported planar membranes. PNAS 81:6159–6163, 1984.

    Article  Google Scholar 

  4. Cavallaro, U., and G. Christofori. Cell adhesion and signalling by cadherins and Ig-cams in cancer. Nat. Rev. Cancer 4:118, 2004.

    Google Scholar 

  5. Chan, P. Y., M. B. Lawrence, M. L. Dustin, L. M. Ferguson, D. E. Golan, and T. A. Springer. Influence of receptor lateral mobility on adhesion strengthening between membranes containing Lfa-3 and Cd2. J. Cell Biol. 115:245–255, 1991.

    Article  Google Scholar 

  6. Dean, C., F. G. Scholl, J. Choih, S. DeMaria, J. Berger, E. Isacoff, and P. Scheiffele. Neurexin mediates the assembly of presynaptic terminals. Nat. Neurosci. 6:708–716, 2003.

    Article  Google Scholar 

  7. Drees, F., A. Reilein, W. J. Nelson, M. D. Hansen, and J. S. Ehrlich. Cell-adhesion assays: fabrication of an E-cadherin substratum and isolation of lateral and Basal membrane patches. Methods Mol. Biol. 294:303–320, 2005.

    Google Scholar 

  8. Ehrlich, J. S., M. D. Hansen, and W. J. Nelson. Spatio-temporal regulation of Rac1 localization and lamellipodia dynamics during epithelial cell–cell adhesion. Dev. Cell 3:259–270, 2002.

    Article  Google Scholar 

  9. Fukata, M., K. Kaibuchi, M. Fukata, and K. Kaibuchi. Rho-family GTPases in cadherin-mediated cell–cell adhesion. Nat. Rev. Mol. Cell Biol. 2:887–897, 2001.

    Article  Google Scholar 

  10. Fukata, M., M. Nakagawa, and K. Kaibuchi. Roles of Rho-family GTPases in cell polarisation and directional migration. Curr. Opin. Cell Biol. 15:590–597, 2003.

    Article  Google Scholar 

  11. Ganz, A., M. Lambert, A. Saez, P. Silberzan, A. Buguin, R. M. Mege, and B. Ladoux. Traction forces exerted through N-cadherin contacts. Biol. Cell 98:721–730, 2006.

    Article  Google Scholar 

  12. Gavard, J., M. Lambert, I. Grosheva, V. Marthiens, T. Irinopoulou, J. F. Riou, A. Bershadsky, and R. M. Mege. Lamellipodium extension and cadherin adhesion: two cell responses to cadherin activation relying on distinct signalling pathways. J. Cell Sci. 117:257–270, 2004.

    Article  Google Scholar 

  13. Grakoui, A., S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, and M. L. Dustin. The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–227, 1999.

    Article  Google Scholar 

  14. Groves, J. T., and M. L. Dustin. Supported planar bilayers in studies on immune cell adhesion and communication. J. Immunol. Methods 278:19–32, 2003.

    Article  Google Scholar 

  15. Hafeman, D. G., V. von Tscharner, and H. M. McConnell. Specific antibody-dependent interactions between macrophages and lipid haptens in planar lipid monolayers. PNAS 78:4552–4556, 1981.

    Article  Google Scholar 

  16. Iino, R., I. Koyama, and A. Kusumi. Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys. J. 80:2667–2677, 2001.

    Article  Google Scholar 

  17. Johnson, S. J., T. M. Bayerl, D. C. McDermott, G. W. Adam, A. R. Rennie, R. K. Thomas, and E. Sackmann. Structure of an adsorbed dimyristoylphosphatidylcholine bilayer measured with specular reflection of neutrons. Biophys. J. 59:289–294, 1991.

    Article  Google Scholar 

  18. Kovacs, E. M., R. G. Ali, A. J. McCormack, and A. S. Yap. E-cadherin homophilic ligation directly signals through Rac and phosphatidylinositol 3-kinase to regulate adhesive contacts. J. Biol. Chem. 277:6708–6718, 2002.

    Article  Google Scholar 

  19. Kusumi, A., C. Nakada, K. Ritchie, K. Murase, K. Suzuki, H. Murakoshi, R. S. Kasai, J. Kondo, and T. Fujiwara. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Ann. Rev. Biophys. Biomol. Struct. 34:351–378, 2005.

    Article  Google Scholar 

  20. Lambert, M., D. Choquet, and R.-M. Mege. Dynamics of ligand-induced, Rac1-dependent anchoring of cadherins to the actin cytoskeleton. J. Cell Biol. 157:469–479, 2002.

    Article  Google Scholar 

  21. Lambert, M., F. Padilla, and R. M. Mege. Immobilized dimers of N-cadherin-Fc chimera mimic cadherin-mediated cell contact formation: contribution of both outside-in and inside-out signals. J. Cell Sci. 113:2207–2219, 2000.

    Google Scholar 

  22. Nakagawa, M., M. Fukata, M. Yamaga, N. Itoh, and K. Kaibuchi. Recruitment and activation of Rac1 by the formation of E-cadherin-mediated cell–cell adhesion sites. J. Cell Sci. 114:1829–1838, 2001.

    Google Scholar 

  23. Nejsum, L. N., and W. J. Nelson. A molecular mechanism directly linking E-cadherin adhesion to initiation of epithelial cell surface polarity. J. Cell Biol. 178:323–335, 2007.

    Article  Google Scholar 

  24. Pautot, S., H. Lee, E. Y. Isacoff, and J. T. Groves. Neuronal synapse interaction reconstituted between live cells and supported lipid bilayers. Nat. Chem. Biol. 1:283, 2005.

    Article  Google Scholar 

  25. Perez, T. D., W. J. Nelson, S. G. Boxer, and L. Kam. E-cadherin tethered to micropatterned supported lipid bilayers as a model for cell adhesion. Langmuir 21:11963–11968, 2005.

    Article  Google Scholar 

  26. Perez, T. D., M. Tamada, M. P. Sheetz, and W. J. Nelson. Immediate-early signaling induced by E-cadherin engagement and adhesion. J. Biol. Chem. 283:5014–5022, 2008.

    Article  Google Scholar 

  27. Ritchie, K., R. Iino, T. Fujiwara, K. Murase, and A. Kusumi. The fence and picket structure of the plasma membrane of live cells as revealed by single molecule techniques. Mol. Membr. Biol. 20:13–18, 2003.

    Article  Google Scholar 

  28. Sackmann, E. Supported membranes: scientific and practical applications. Science 271:43–48, 1996.

    Article  Google Scholar 

  29. Shen, K., J. Tsai, P. Shi, and L. C. Kam. Self-aligned supported lipid bilayers for patterning the cell–substrate interface. J. Am. Chem. Soc. 131:13204–13205, 2009.

    Article  Google Scholar 

  30. Shi, P., K. Shen, and L. Kam. Local presentation of L1 and N-cadherin in multicomponent, microscale patterns differentially direct neuron function in vitro. Dev. Neurobiol. 67:1765–1776, 2007.

    Article  Google Scholar 

  31. Song, J. Y., K. Ichtchenko, T. C. Sudhof, and N. Brose. Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. PNAS 96:1100–1105, 1999.

    Article  Google Scholar 

  32. Tsai, J., E. Sun, Y. Gao, J. C. Hone, and L. C. Kam. Non-Brownian diffusion of membrane molecules in nanopatterned supported lipid bilayers. Nano Lett. 8:425–430, 2008.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Institutes of Health through the NIH Roadmap for Medical Research (PN2 EY016586).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. Kam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, J., Kam, L.C. Lateral Mobility of E-Cadherin Enhances Rac1 Response in Epithelial Cells. Cel. Mol. Bioeng. 3, 84–90 (2010). https://doi.org/10.1007/s12195-010-0104-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-010-0104-4

Keywords

Navigation