Skip to main content
Log in

Microtubule Tip Tracking and Tip Structures at the Nanometer Scale Using Digital Fluorescence Microscopy

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Microtubules (MTs) are central to fundamental cellular processes including mitosis, polarization, and axon extension. A key issue is to understand how MT-associated proteins and therapeutic drugs, such as the anticancer drug paclitaxel, control MT self-assembly. To facilitate this research, it would be helpful to have automated methods that track the tip of dynamically assembling MTs as observed via fluorescence microscopy. Through a combination of digital fluorescence imaging with MT modeling, model-convolution, and automated image analysis of live and fixed MTs, we developed a method for MT tip tracking that includes estimation of the measurement error. We found that the typical single-frame tip tracking accuracy of GFP-tubulin labeled MTs in living LLC-PK1α cells imaged with a standard widefield epifluorescence digital microscope system is ~36 nm, the equivalent of ~4.5 tubulin dimer layers. However, if the MT tips are blunt, the tip tracking accuracy can be as accurate as ~15 nm (~2 dimer layers). By fitting a Gaussian survival function to the MT tip intensity profiles, we also established that MTs within living cells are not all blunt, but instead exhibit highly variable tapered tip structures with a protofilament length standard deviation of ~180 nm. More generally, the tip tracking method can be extended to track the tips of any individual fluorescently labeled filament, and can estimate filament tip structures both in vivo and in vitro with single-frame accuracy on the nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular Biology of the Cell. New York: Garland Science, 2007.

  2. Bates, M., B. Huang, G. T. Dempsey, and X. Zhuang. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317:1749–1753, 2007.

    Article  Google Scholar 

  3. Betzig, E., G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645, 2006.

    Article  Google Scholar 

  4. Bicek, A. D., E. Tüzel, D. M. Kroll, and D. J. Odde. Analysis of microtubule curvature. Methods Cell Biol. 83:237–268, 2007.

    Article  Google Scholar 

  5. Bicek, A. D., E. Tuzel, A. Demtchouk, M. Uppalapati, W. O. Hancock, D. M. Kroll, and D. J. Odde. Anterograde microtubule transport drives microtubule bending in LLC-PK1 epithelial cells. Mol. Biol. Cell 20:2943–2953, 2009.

    Article  Google Scholar 

  6. Brangwynne, C. P., G. H. Koenderink, E. Barry, Z. Dogic, F. C. MacKintosh, and D. A. Weitz. Bending dynamics of fluctuating biopolymers probed by automated high-resolution filament tracking. Biophys. J. 93:346–359, 2007.

    Article  Google Scholar 

  7. Cassimeris, L., N. K. Pryer, and E. D. Salmon. Real-time observations of microtubule dynamic instability in living cells. J. Cell Biol. 107:2223–2231, 1988.

    Article  Google Scholar 

  8. Chrétien, D., S. D. Fuller, and E. Karsenti. Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates. J. Cell. Biol. 129:1311–1328, 1995.

    Article  Google Scholar 

  9. Gardner, M. K., D. J. Odde, and K. Bloom. Hypothesis testing via integrated computer modeling and digital fluorescence microscopy. Methods 41:232–237, 2007.

    Article  Google Scholar 

  10. Gardner, M., B. Sprague, C. Pearson, B. Cosgrove, A. Bicek, K. Bloom, E. Salmon, and D. Odde. Model convolution: a computational approach to digital image interpretation. Cell. Mol. Bioeng. 3:163–170, 2010.

    Article  Google Scholar 

  11. Gildersleeve, R. F., A. R. Cross, K. E. Cullen, A. P. Fagen, and R. C. Williams. Microtubules grow and shorten at intrinsically variable rates. J. Biol. Chem. 267:7995–8006, 1992.

    Google Scholar 

  12. Hadjidemetriou, S., D. Toomre, and J. Duncan. Motion tracking of the outer tips of microtubules. Med. Image Anal. 12:689–702, 2008.

    Article  Google Scholar 

  13. Mandelkow, E. M., E. Mandelkow, and R. A. Milligan. Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study. J. Cell Biol. 114:977–991, 1991.

    Article  Google Scholar 

  14. Mitchison, T., and M. Kirschner. Dynamic instability of microtubule growth. Nature 312:237–242, 1984.

    Article  Google Scholar 

  15. Odde, D. J., L. Cassimeris, and H. M. Buettner. Kinetics of microtubule catastrophe assessed by probabilistic analysis. Biophys. J. 69:796–802, 1995.

    Article  Google Scholar 

  16. Odde, D. J., H. M. Buettner, and L. Cassimeris. Spectral analysis of microtubule assembly dynamics. AIChE J. 42:1434–1442, 1996.

    Article  Google Scholar 

  17. Rusan, N. M., C. J. Fagerstrom, A. C. Yvon, and P. Wadsworth. Cell cycle-dependent changes in microtubule dynamics in living cells expressing green fluorescent protein-{alpha} Tubulin. Mol. Biol. Cell 12:971–980, 2001.

    Google Scholar 

  18. Schek, III, H. T., M. K. Gardner, J. Cheng, D. J. Odde, and A. J. Hunt. Microtubule assembly dynamics at the nanoscale. Curr. Biol. 17:1445–1455, 2007.

    Article  Google Scholar 

  19. Schermelleh, L., P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320:1332–1336, 2008.

    Article  Google Scholar 

  20. Sprague, B. L., C. G. Pearson, P. S. Maddox, K. S. Bloom, E. Salmon, and D. J. Odde. Mechanisms of microtubule-based kinetochore positioning in the yeast metaphase spindle. Biophys. J. 84:3529–3546, 2003.

    Article  Google Scholar 

  21. VanBuren, V., D. J. Odde, and L. Cassimeris. Estimates of lateral and longitudinal bond energies within the microtubule lattice. Proc. Nat. Acad. Sci. USA 99:6035–6040, 2002.

    Article  Google Scholar 

  22. VanBuren, V., L. Cassimeris, and D. J. Odde. Mechanochemical model of microtubule structure and self-assembly kinetics. Biophys. J. 89:2911–2926, 2005.

    Article  Google Scholar 

  23. Walker, R. A., E. T. O’Brien, N. K. Pryer, M. F. Soboeiro, W. A. Voter, H. P. Erickson, and E. D. Salmon. Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J. Cell Biol. 107:1437–1448, 1988.

    Article  Google Scholar 

  24. Wan, X., R. P. O’Quinn, H. L. Pierce, A. P. Joglekar, W. E. Gall, J. G. DeLuca, C. W. Carroll, S. Liu, T. J. Yen, B. F. McEwen, P. T. Stukenberg, A. Desai, and E. Salmon. Protein architecture of the human kinetochore microtubule attachment site. Cell 137:672–684, 2009.

    Article  Google Scholar 

  25. Waterman-Storer, C. M., and E. Salmon. How microtubules get fluorescent speckles. Biophys. J. 75:2059–2069, 1998.

    Article  Google Scholar 

  26. Witte, H., D. Neukirchen, and F. Bradke. Microtubule stabilization specifies initial neuronal polarization. J. Cell Biol. 180:619, 2008.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dominique Seetapun for technical assistance. The research was conducted with support from NIH (GM071522 and GM076177), and NSF (MCB-0615568).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Odde.

Additional information

Associate Editors Yingxiao Wang and Peter J. Butler oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1: Point spread function (PSF) and simulation of a MT tip.

(A) Simulated fine-grid PSF, using numerical aperture of 1.49 and wavelength of 513 nm, with pixel size of 2.5 nm. (B) PSF intensity profile (blue markers). A Gaussian function (red line) can be used to approximate the intensity, which analytically obeys a 2D Airy function (dashed blue line). The Gaussian fit to a noiseless PSF has a standard deviation of ~ 72 nm. (C) Start of the MT simulation: a speckle-free, blunt simulated MT on a fine-grid, pixel size = 2.5 nm. (D) Fine-grid blunt MT. Each pixel of the MT is given a 10% probability to have a value of 1, otherwise its value is set to 0. This 10% probability accounts for the incomplete labeling of tubulin in eGFP-α tubulin labeled cells. The stochastic incorporation of labeled subunits gives rise to the “speckle” noise along the MT. Inset: a magnified MT tip. (E) Speckled MT shown in Fig. 1d convolved with the PSF shown in 1A. (F) Model-convolved MT from Fig. 1e after coarse-graining and addition of Gaussian white noise. Coarse-graining is done so that one pixel in the final simulated image represents 42 nm in the specimen plane. The coarse-grained image is obtained by averaging a 17 × 17 array of 2.5 nm fine-grid pixels to form a single 42 nm coarse-grained pixel. Gaussian white noise is added to the coarse-grained pixels to match the variability in background intensity observed experimentally.

Supplementary Fig. 2: Estimation of MT speckle level.

MT noise was plotted as a function of the speckle parameter for the 15th frame of fixed cell MT movies (speckle level estimation in live cell MTs is similar). The simulation starts with a speckle parameter of 0.002 (0.2%) and increases it incrementally by 0.002, each time recording the standard deviation of the pixel intensities along the backbone of the MT. Parameters for background intensity, signal above background, and background noise remain constant. For high speckle parameter values, the noise along the MT is dominated by background Gaussian white noise, while for low speckle parameter values it is dominated by the speckle noise. The parameter is adjusted until the noise along the MT matches the level observed experimentally (black dashed line). The red line shows the best-fit power law to the simulations represented by the blue dots. The point of intersection between the red line and the dashed black line represents the estimated speckle parameter (black circle).

Supplementary Fig. 3: Fixed cell MT simulation.

(A) σPF+PSF distributions for experimental (dark blue) and simulated (light blue) fixed cell MTs. (B) Accuracy of tip position estimation. Dashed lines represent accuracy analysis with a presence of a stage drift, solid lines represent detrended accuracy analysis.

Supplementary Fig. 4: Example kymographs of live cell background.

Due to diffusion in live cells, the background appears relatively uniform with no apparent streaks throughout the movies (in comparison to kymographs from fixed cell background, Supplementary Fig. 5). Top panel: live cell region, white lines indicate regions where kymographs were obtained (max intensity). Bottom panels: five kymographs from the cell region. Horizontal bar = 1000 nm, vertical bar = 10 s.

Supplementary Fig. 5: Example kymographs of fixed cells background.

Same as Supplementary Fig. 4, except for fixed MTs. Due to lack of diffusion in fixed cells, the background appears relatively nonuniform with persistent fluorescent streaks that remain stationary throughout the movies. Top panel: fixed cell region, white lines indicate regions where kymographs were obtained (max intensity). Bottom panels: seven kymographs from the cell region. Horizontal bar = 1000 nm, vertical bar = 10 s.

Supplementary material 1 (PPTX 269 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demchouk, A.O., Gardner, M.K. & Odde, D.J. Microtubule Tip Tracking and Tip Structures at the Nanometer Scale Using Digital Fluorescence Microscopy. Cel. Mol. Bioeng. 4, 192–204 (2011). https://doi.org/10.1007/s12195-010-0155-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-010-0155-6

Keywords

Navigation