Skip to main content
Log in

Cell Adhesion on Micro-Structured Fibronectin Gradients Fabricated by Multiphoton Excited Photochemistry

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Concentration gradients of ECM proteins play active roles in many areas of cell biology including wound healing and metastasis. They may also form the basis of tissue engineering scaffolds, as these can direct cell adhesion and migration and promote new matrix synthesis. To better understand cell–matrix interactions on attractive gradients, we have used multiphoton excited (MPE) photochemistry to fabricate covalently linked micro-structured gradients from fibronectin (FN). The gradient design is comprised of a parallel series of individual linear gradients with overall dimensions of approximately 800 × 800 µm, where a linear dynamic range of nearly 10-fold in concentration was achieved. The adhesion dynamics of 3T3 fibroblasts were investigated, where the cell morphology and actin cytoskeleton became increasingly elongated and aligned with the direction of the gradient at increasing protein concentration. Moreover, the cell morphologies are distinct when adhered to regions of differing FN concentration but with similar topography. These results show that the fabrication approach allows investigating the roles of contact guidance and ECM cues on the cell–matrix interactions. We suggest this design overcomes some of the limitations with other fabrication methods, especially in terms of 3D patterning capabilities, and will serve as a new tool to study cell–matrix interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Basu, S., and P. J. Campagnola. Properties of crosslinked protein matrices for tissue engineering applications synthesized by multiphoton excitation. J. Biomed. Mater. Res. 71A(2):359–368, 2004.

    Article  Google Scholar 

  2. Basu, S., L. P. Cunningham, G. Pins, K. Bush, R. Toboada, A. R. Howell, J. Wang, and P. J. Campagnola. Multi-photon excited fabrication of collagen matrices crosslinked by a modified benzophenone dimer: bioactivity and enzymatic degradation. Biomacromolecules 6:1465–1474, 2005.

    Article  Google Scholar 

  3. Basu, S., C. W. Wolgemuth, and P. J. Campagnola. Measurement of normal and anomalous diffusion of dyes within protein structures fabricated via multi-photon excited crosslinking. Biomacromolecules 5:2347–2357, 2004.

    Article  Google Scholar 

  4. Belisle, J. M., J. P. Correia, P. W. Wiseman, T. E. Kennedy, and S. Costantino. Patterning protein concentration using laser-assisted adsorption by photobleaching, LAPAP. Lab Chip 8(12):2164–2167, 2008.

    Article  Google Scholar 

  5. Brandley, B. K., and R. L. Schnaar. Tumor cell haptotaxis on covalently immobilized linear and exponential gradients of a cell adhesion peptide. Dev. Biol. 135(1):74–86, 1989.

    Article  Google Scholar 

  6. Burdick, J. A., A. Khademhosseini, and R. Langer. Fabrication of gradient hydrogels using a microfluidics/photopolymerization process. Langmuir 20(13):5153–5156, 2004.

    Article  Google Scholar 

  7. Campagnola, P. J., A. R. Howell, D. Delguidas, G. A. Epling, J. D. Pitts, and S. L. Goodman. 3-Dimensional sub-micron polymerization of acrylamide by multi-photon excitation of xanthene dyes. Macromolecules 33:1511–1513, 2000.

    Article  Google Scholar 

  8. Chen, X., M. A. Brewer, C. Zou, and P. J. Campagnola. Adhesion and migration of ovarian cancer cells on crosslinked laminin fibers nanofabricated by multiphoton excited photochemistry. Integr. Biol. 1:469–476, 2009.

    Article  Google Scholar 

  9. Cunningham, L. P., M. P. Veilleux, and P. J. Campagnola. Freeform multiphoton excited microfabrication for biological applications using a rapid prototyping CAD-based approach. Opt. Express 14:8613–8621, 2006.

    Article  Google Scholar 

  10. Dalby, M. J., M. O. Riehle, D. S. Sutherland, H. Agheli, and A. S. Curtis. Fibroblast response to a controlled nanoenvironment produced by colloidal lithography. J. Biomed. Mater. Res. 69A(2):314–322, 2004.

    Article  Google Scholar 

  11. DeLong, S. A., A. S. Gobin, and J. L. West. Covalent immobilization of RGDS on hydrogel surfaces to direct cell alignment and migration. J. Controlled Release 109(1–3):139–148, 2005.

    Article  Google Scholar 

  12. DeLong, S. A., J. J. Moon, and J. L. West. Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration. Biomaterials 26(16):3227–3234, 2005.

    Article  Google Scholar 

  13. Dertinger, S. K., X. Jiang, Z. Li, V. N. Murthy, and G. M. Whitesides. Gradients of substrate-bound laminin orient axonal specification of neurons. Proc. Natl Acad. Sci. USA 99(20):12542–12547, 2002.

    Article  Google Scholar 

  14. Doyle, A. D., F. W. Wang, K. Matsumoto, and K. M. Yamada. One-dimensional topography underlies three-dimensional fibrillar cell migration. J. Cell Biol. 184(4):481–490, 2009.

    Article  Google Scholar 

  15. Fricke, R., P. D. Zentis, L. T. Rajappa, B. Hofmann, M. Banzet, A. Offenhausser, and S. H. Meffert. Axon guidance of rat cortical neurons by microcontact printed gradients. Biomaterials 32(8):2070–2076, 2011.

    Article  Google Scholar 

  16. Gallant, N. D., K. E. Michael, and A. J. Garcia. Cell adhesion strengthening: contributions of adhesive area, integrin binding, and focal adhesion assembly. Mol. Biol. Cell 16(9):4329–4340, 2005.

    Article  Google Scholar 

  17. Garcia, A. J., and N. D. Gallant. Stick and grip: measurement systems and quantitative analyses of integrin-mediated cell adhesion strength. Cell Biochem. Biophys. 39(1):61–73, 2003.

    Article  Google Scholar 

  18. Gunawan, R. C., E. R. Choban, J. E. Conour, J. Silvestre, L. B. Schook, H. R. Gaskins, D. E. Leckband, and P. J. Kenis. Regiospecific control of protein expression in cells cultured on two-component counter gradients of extracellular matrix proteins. Langmuir 21(7):3061–3068, 2005.

    Article  Google Scholar 

  19. Gunawan, R. C., J. Silvestre, H. R. Gaskins, P. J. Kenis, and D. E. Leckband. Cell migration and polarity on microfabricated gradients of extracellular matrix proteins. Langmuir 22(9):4250–4258, 2006.

    Article  Google Scholar 

  20. Isenberg, B. C., P. A. Dimilla, M. Walker, S. Kim, and J. Y. Wong. Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient strength. Biophys. J. 97(5):1313–1322, 2009.

    Article  Google Scholar 

  21. Jeon, N. L., S. K. W. Dertinger, D. T. Chiu, I. S. Choi, A. D. Stroock, and G. M. Whitesides. Generation of solution and surface gradients using microfluidic systems. Langmuir 16(22):8311–8316, 2000.

    Article  Google Scholar 

  22. Kaehr, B., R. Allen, D. J. Javier, J. Currie, and J. B. Shear. Guiding neuronal development with in situ microfabrication. Proc. Natl Acad. Sci. USA 101(46):16104–16108, 2004.

    Article  Google Scholar 

  23. Kaunas, R., P. Nguyen, S. Usami, and S. Chien. Cooperative effects of Rho and mechanical stretch on stress fiber organization. Proc. Natl Acad. Sci. USA 102(44):15895–15900, 2005.

    Article  Google Scholar 

  24. LaFratta, C. N., D. Lim, K. O’Malley, T. Baldacchini, and J. T. Fourkas. Direct laser patterning of conductive wires on three-dimensional polymeric microstructures. Chem. Mater. 18(8):2038–2042, 2006.

    Article  Google Scholar 

  25. Mai, J., L. Fok, H. Gao, X. Zhang, and M. M. Poo. Axon initiation and growth cone turning on bound protein gradients. J. Neurosci. 29(23):7450–7458, 2009.

    Article  Google Scholar 

  26. Maruo, S., O. Nakamura, and S. Kawata. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 22:132–134, 1997.

    Article  Google Scholar 

  27. Mooney, J. F., A. J. Hunt, J. R. McIntosh, C. A. Liberko, D. M. Walba, and C. T. Rogers. Patterning of functional antibodies and other proteins by photolithography of silane monolayers. Proc. Natl Acad. Sci. USA 93(22):12287–12291, 1996.

    Article  Google Scholar 

  28. Neckers, D. C. Rose Bengal. J. Photochem. Photobiol. A 47:1–29, 1989.

    Article  Google Scholar 

  29. Pins, G. D., K. A. Bush, L. P. Cunningham, and P. J. Campagnola. Multiphoton excited fabricated nano and micropatterned extracellular matrix proteins direct cellular morphology. J. Biomed. Mater. Res. 78A:194–204, 2006.

    Article  Google Scholar 

  30. Pitts, J. D., P. J. Campagnola, G. A. Epling, and S. L. Goodman. Reaction efficiencies for sub-micron multi-photon freeform fabrications of proteins and polymers with applications in sustained release. Macromolecules 33:1514–1523, 2000.

    Article  Google Scholar 

  31. Pitts, J. D., A. R. Howell, R. Taboada, I. Banerjee, J. Wang, S. L. Goodman, and P. J. Campagnola. New photoactivators for multiphoton excited three-dimensional submicron cross-linking of proteins: bovine serum albumin and type 1 collagen. Photochem. Photobiol. 76(2):135–144, 2002.

    Article  Google Scholar 

  32. Plummer, S. T., Q. Wang, P. W. Bohn, R. Stockton, and M. A. Schwartz. Electrochemically derived gradients of the extracellular matrix protein fibronectin on gold. Langmuir 19(18):7528–7536, 2003.

    Article  Google Scholar 

  33. Rhoads, D. S., and J. L. Guan. Analysis of directional cell migration on defined FN gradients: role of intracellular signaling molecules. Exp. Cell Res. 313(18):3859–3867, 2007.

    Article  Google Scholar 

  34. Slater, J. H., and W. Frey. Nanopatterning of fibronectin and the influence of integrin clustering on endothelial cell spreading and proliferation. J. Biomed. Mater. Res. A 87A(1):176–195, 2008.

    Article  Google Scholar 

  35. Sridhar, M., S. Basu, V. L. Scranton, and P. J. Campagnola. Construction of a laser scanning microscope for multiphoton excited optical fabrication. Rev. Sci. Instrum. 74(7):3474–3477, 2003.

    Article  Google Scholar 

  36. Swartz, M. A. Signaling in morphogenesis: transport cues in morphogenesis. Curr. Opin. Biotechnol. 14(5):547–550, 2003.

    Article  Google Scholar 

  37. Teixeira, A. I., G. A. Abrams, P. J. Bertics, C. J. Murphy, and P. F. Nealey. Epithelial contact guidance on well-defined micro- and nanostructured substrates. J. Cell Sci. 116:1881–1892, 2003.

    Article  Google Scholar 

  38. Teixeira, A. I., P. F. Nealey, and C. J. Murphy. Responses of human keratocytes to micro- and nanostructured substrates. J. Biomed. Mater. Res. 71A(3):369–376, 2004.

    Article  Google Scholar 

  39. von Philipsborn, A. C., S. Lang, J. Loeschinger, A. Bernard, C. David, D. Lehnert, F. Bonhoeffer, and M. Bastmeyer. Growth cone navigation in substrate-bound ephrin gradients. Development 133(13):2487–2495, 2006.

    Article  Google Scholar 

  40. Wang, S., C. Wong Po Foo, A. Warrier, M. M. Poo, S. C. Heilshorn, and X. Zhang. Gradient lithography of engineered proteins to fabricate 2D and 3D cell culture microenvironments. Biomed. Microdevices 11(5):1127–1134, 2009.

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support under NIH 1U54-RR022232 and NSF CBET--1057766. Y.-D. Su and S.-J. Chen acknowledge support from National Cheng Kung University. We also thank Prof. Vladimir Rodionov for the use of the imaging system for live cell studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Campagnola.

Additional information

Associate Editor Joyce Wong oversaw the review of this article.

Xiyi Chen and Yuan-Deng Su contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Su, YD., Ajeti, V. et al. Cell Adhesion on Micro-Structured Fibronectin Gradients Fabricated by Multiphoton Excited Photochemistry. Cel. Mol. Bioeng. 5, 307–319 (2012). https://doi.org/10.1007/s12195-012-0237-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-012-0237-8

Keywords

Navigation