Skip to main content
Log in

Effects of silver content and morphology on the catalytic activity of silver-grafted titanium oxide nanostructure

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

As titanium oxide is a well-known photocatalyst, we investigated the effects of silver content and nanostructural morphology on the photocatalytic degradation of two dyes, methylene blue and rhodamine B. Two nano-formulations were utilized, including nanofibers and nanoparticles. Silver-grafted titanium oxide nanofibers were synthesized using the electrospinning of silver nitrate/titanium isopropoxide/poly(vinyl acetate) sol-gel. The nanoparticulate form was obtained by calcination of a ground powder prepared from the same electrospun sol-gel. The results affirmed the advantage of the silver-grafted titanium oxide nanostructures over the silver-free ones. Increasing the silver content in the nanofibers led to increases in their surface area, which is an important parameter in heterogeneous catalytic chemical reactions. Therefore, the results strongly suggest the use of silver-grafted titanium oxide in a nanofibrous form. These results further support utilizing Agloaded titanium oxide nanofibers as a photocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Chen and S. S. Mao, Chem. Rev., 107, 2891 (2007).

    Article  CAS  Google Scholar 

  2. G. Pfaff and P. Reynders, Chem. Rev., 99, 1963 (1999).

    Article  CAS  Google Scholar 

  3. A. Salvador, M. C. Pascual-Marti, J. R. Adell, A. Requeni, and J. G. March, J. Pharm. Biomed. Anal., 22, 301 (2000).

    Article  CAS  Google Scholar 

  4. R. Zallen and M. P. Moret, Solid State Commun., 137, 154 (2006).

    CAS  Google Scholar 

  5. J. H. Braun, A. Baidins, and R. E. Marganski, Prog. Org. Coat, 20, 105 (1992).

    Article  CAS  Google Scholar 

  6. S. A. Yuan, W. H. Chen, and S. S. Hu, Mater. Sci. Eng., C, 25, 479 (2005).

    Article  Google Scholar 

  7. A. Fujishima and K. Honda, Nature, 238, 37 (1972).

    Article  CAS  Google Scholar 

  8. A. Fujishima, T. N. Rao, and D. A. Tryk, J. Photochem. Photobiol., C, 1, 1 (2000).

    Article  CAS  Google Scholar 

  9. D. A. Tryk, A. Fujishima, and K. Honda, Electrochim. Acta, 45, 2363 (2000).

    Article  CAS  Google Scholar 

  10. M. Gratzel, Nature, 414, 338 (2001).

    Article  CAS  Google Scholar 

  11. A. Hagfeldt and M. Gratzel, Chem. Rev., 95, 49 (1995).

    Article  CAS  Google Scholar 

  12. A. L. Linsebigler, G. Lu, and J. T. Yates, Chem. Rev., 95, 735 (1995).

    Article  CAS  Google Scholar 

  13. A. Mills and S. Le Hunte, J. Photochem. Photobiol., A, 108, 1 (1997).

    Article  CAS  Google Scholar 

  14. J. Schulz, A. Roucoux, and H. Patin, Chem. Rev., 102, 3757 (2002).

    Article  Google Scholar 

  15. Y. K. Lai, L. Sun, C. Chen, C. G. Nie, J. Zuo, and C. Lin, J. Appl. Surf. Sci., 252, 1101 (2005).

    Article  CAS  Google Scholar 

  16. Y. K. Lai, L. Sun, Y. C. Chen, H. F. Zhuang, C. J. Lin, and J. W. Chin, J. Electrochem. Soc., 153, 123 (2006).

    Article  Google Scholar 

  17. D. Hufschmidt, D. Bahnemann, J. J. Testa, C. A. Emilio, and M. I. Litter, J. Photochem. Photobiol., A, 148, 223 (2002).

    Article  CAS  Google Scholar 

  18. X. Z. Li and F. B. Li, Environ. Sci. Technol., 35, 2381 (2001).

    Article  CAS  Google Scholar 

  19. Y. Tian and T. Tatsuma, J. Am. Chem. Soc., 127, 7632 (2005).

    Article  CAS  Google Scholar 

  20. C. L. Haynes and R. P. Van Duyne, J. Phys. Chem. B, 107, 7426 (2003).

    Article  CAS  Google Scholar 

  21. J. H. Hodak, I. Martini, and G. V. Hartland, J. Phys. Chem. B, 102, 6958 (1998).

    Article  CAS  Google Scholar 

  22. G. Zhao, H. Kozuka, and T. Yoko, Thin Solid Films, 277, 147 (1996).

    Article  CAS  Google Scholar 

  23. H. M. Sung-Suh, J. R. Choi, H. J. Hah, S. M. Koo, and Y. C. Bae, J. Photochem. Photobiol., A, 163, 37 (2004).

    Article  CAS  Google Scholar 

  24. T. Wu, G. Liu, J. Zhao, H. Hidaka, and N. Serpone, J. Phys. Chem. B, 102, 5845 (1998).

    Article  CAS  Google Scholar 

  25. N. Sobana, M. Muruganadham, and M. Swaminathan, J. Mol. Catal. A: Chem., 258, 124 (2006).

    Article  CAS  Google Scholar 

  26. J. Herrmann, J. Disdier, and P. Pichat, J. Phys. Chem., 90, 6025 (1986).

    Article  Google Scholar 

  27. A. Henglein, J. Phys. Chem., 83, 2203 (1979).

    Article  Google Scholar 

  28. J. M. Herrmann, “Strong Metal-Support Interactions” (R. T. K. Baker, S. J. Tauster, and J. A. Dumesic. Eds.), ACS Symposium Series, 298, 200, 1986.

  29. J. Disdier, J. M. Herrmann, and P. Pichat, J. Chem. Soc. Faraday Trans, 77, 2815 (1981).

    Article  Google Scholar 

  30. I. M. Arabatzis, T. Stergiopoulos, M. C. Bernard, D. Labou, S. G. Neophytides, and P. Falaras, Appl. Catal., B, 42, 187 (2003).

    Article  CAS  Google Scholar 

  31. J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. Gonzalez-Elipe, and A. Fernandez, Appl. Catal., B, 13, 219 (1997).

    Article  CAS  Google Scholar 

  32. C. Damm and G. Israel, Dyes Pigm., 75, 507 (2007).

    Article  Google Scholar 

  33. J. L. Shie, C. H. Lee, C. S. Chiou, C. T. Chang, C. C. Chang, and C. Y. Chang, J. Hazard. Mater., 155, 164 (2008).

    Article  CAS  Google Scholar 

  34. X. He, X. Zhao, and B. Liu, Appl. Surf. Sci., 254, 1705 (2008).

    Article  CAS  Google Scholar 

  35. J. Hu, M. Y. Ouyang, and C. M. Lieber, Nature, 399, 48 (1999).

    Article  CAS  Google Scholar 

  36. D. S. Xu, G. L. Guo, L. L. Gui, Y. Q. Tang, E. J. Shi, and E. X. Jin, Appl. Phys. Lett., 75, 481 (1999).

    Article  CAS  Google Scholar 

  37. M. Gsell, P. Jakob, and D. Menzel, Science, 280, 717 (1998).

    Article  CAS  Google Scholar 

  38. P. Viswanathamurthi, N. Bhattarai, C. K. Kim, H. Y. Kim, and D. R. Lee, Inorg. Chem. Commun., 7, 679 (2004).

    Article  CAS  Google Scholar 

  39. B. Ding, C. K. Kim, H. Y. Kim, M. S. Khil, and S. Park, Fiber. Polym., 5, 105 (2004).

    Article  CAS  Google Scholar 

  40. D. Briggs, “Surface Analysis of Polymers by XPS and Static SIMS”, 2nd ed., Cambridge University Press, 1993.

  41. N. M. Barakat, K. D. Woo, M. A. Kanjwal, K. E. Choi, M. S. Khil, and H. K. Kim, Langmuir, 24, 11982 (2008).

    Article  CAS  Google Scholar 

  42. C. F. Bohrem and D. R. Huffman, “Absorption and Scattering of Light by Small Particles”, Wiley-Interscience, New York, 1983.

    Google Scholar 

  43. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, Appl. Phys. Lett., 85, 5833 (2004).

    Article  CAS  Google Scholar 

  44. H. H. Jose, I. Martini, and V. H. Gregory, J. Phys. Chem. B, 102, 6958 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nasser A. M. Barakat or Hak Yong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanjwal, M.A., Barakat, N.A.M., Sheikh, F.A. et al. Effects of silver content and morphology on the catalytic activity of silver-grafted titanium oxide nanostructure. Fibers Polym 11, 700–709 (2010). https://doi.org/10.1007/s12221-010-0700-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-010-0700-x

Keywords

Navigation