Skip to main content
Log in

Filament formation in Saccharomyces cerevisiae — a review

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Many yeasts can produce filamentous elongated cells identifiable as hyphae, pseudohyphae or invasive filaments. Filament formation has been understood as a foraging response that occurs in nutrient-poor conditions. However, fusel alcohols were observed to induce filament formation in rich nutrient conditions in every yeast species examined. Fusel alcohols, e.g., 3-methyl-1-butanol (3Me-BuOH; ‘isoamyl alcohol’), 2-methyl-1-propanol (isobutyl alcohol), (−)-2-methyl-1-butanol (‘active amyl alcohol’), 2-phenylethanol and 3-(2-hydroxyethyl)indole (tryptophol) (the end products of leucine, valine, isoleucine, phenylalanine and tryptophan catabolism, respectively) are the end products of amino acid catabolism that accumulate when nutrients become limiting. Thus, yeast responds to its own metabolic by-products. Considerable effort was made to define the cell biological and biochemical changes that take place during 3Me-BuOH-induced filam entation. In Saccharomyces cerevisiae filaments contain significantly greater mitochondrial mass and increased chitin content in comparison with yeast-form cells. The global transcriptional response of S. cerevisiae during the early stages of 3Me-BuOH-induced filament formation has been described. Four ORFs displayed very significant (more than 10-fold) increases in their RNA species, and 12 ORFs displayed increases in transcription of more than 5-fold. The transcription of five genes (all of which encode transporters) decreased by similar amounts. Where examined, the activity of the proteins encoded reflected the transcriptional pattern of their respective mRNAs. To understand this regulation, studies were performed to see whether deletion or overexpression of key genes affects the ability to filament and invade solid YEPD medium. This has led to identification of those proteins that are essential for filament formation, repressors and those which are simply not required. It also leads to the conclusion that 3Me-BuOH-induced filament formation is not a foraging response but a response to reduced growth rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

3ME-BuOH:

3-methyl-1-butanol (‘isoamyl alcohol’)

PDR:

pleiotropic drug resistance

YEPD:

medium (%, W/V): bacteriological peptone 2, dextrose (glucose) 2, yeast extract 1; also contains 0.01% of both adenine and uracil

References

  • Aguilera J., Van Dijken J.P., Dewinde J.H., Pronk J.T.: Carbonic anhydrase (Nce103): an essential biosynthetic enzyme for growth of Saccharomyces cerevisiae at atmospheric carbon dioxide pressure. Biochem.J. 391, 311–316 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Amoah-Buahin E., Bone N., Armstrong J.: Hyphal growth in the fission yeast Schizosaccharomyces pombe. Euk.Cell 4, 1287–1297 (2005).

    Article  CAS  Google Scholar 

  • Ashe M.P., Slaven J.W., Delong S.K., Ibrahimo S., Sachs A.B.: A novel eIF2B-dependent mechanism of translational control in yeast as a response to fusel alcohols. EMBO J. 20, 6464–6474 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Buziol S., Becker J., Baumeister A, Jung S., Mauch K., Reuss M., Boles E.: Determination of in vivo kinetics of the starvation-induced Hxt5 glucose transporter of Saccharomyces cerevisiae. FEMS Yeast Res. 2, 283–291 (2002).

    PubMed  CAS  Google Scholar 

  • Chelstowska A., Liu Z., Jia Y., Amberg D., Butow R.A.: Signaling between the mitochondria and the nucleus regulates the expression of a new d-lactate dehydrogenase activity in yeast. Yeast 15, 1377–1391 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Chen H., Fink G.R.: Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev. 20, 1150–1161 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Chen S., Brockenbrough J.S., Dove J.E., Aris J.P.: Homocitrate synthase is located in the nucleus in the yeast Saccharomyces cerevisiae. J.Biol.Chem. 272, 10839–10846 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Chen C.-N., Porubleva L., Shearer G., Svrakic M., Holden L. G., Dover J.L., Johnston M., Chitnis P.R., Kohl D.H.: Associating protein activities with their genes: rapid identification of a gene encoding a methylglyoxal reductase in the yeast Saccharomyces cerevisiae. Yeast 20, 545–554 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Chen H., Fujita M., Feng Q., Clardy J., Fink G.R.: Tyrosol is a quorum-sensing molecule in Candida albicans. Proc.Nat.Acad.Sci.USA 101, 5048–5052 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Destruelle M., Kolzer H., Klionsky D.J.: Identification and characterization of a novel yeast gene: the YGP1 gene product is a highly glycosylated secreted protein that is synthesized in response to nutrient limitation. Mol.Cell.Biol. 14, 2740–2754 (1994).

    PubMed  CAS  Google Scholar 

  • Dickinson J.R.: Irreversible formation of pseudohyphase by haploid Saccharomyces cerevisiae. FEMS Microbiol.Lett. 119, 99–104 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Dickinson J.R.: ’Fusel’ alcohols induce hyphal-like extensions and pseudohyphal formation in yeasts. Microbiology 142, 1391–1397 (1996).

    PubMed  CAS  Google Scholar 

  • Dickinson J.R.: Life cycle and morphogenesis, pp. 1–19 in J.R. Dickinson, M. Schweizer (Eds): The Metabolism and Molecular Physiology of Saccharomyces cerevisiae, 2nd ed. CRC Press, Boca Raton 2004.

    Google Scholar 

  • Dickinson J.R., Lanterman M.M., Danner D.J., Pearson B.M., Sanz P., Harrison S.J., Hewlins M.J.E.: A 13C nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae. J.Biol.Chem. 272, 26871–26878 (1977).

    Article  Google Scholar 

  • Dickinson J.R., Harrison S.J., Hewlins M.J.E.: An investigation into the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae. J.Biol.Chem. 273, 25751–25756 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Dickinson J.R., Harrison S.J., Dickinson J.A., Hewlins M.J.E.: An investigation of the metabolism of isoleucine to active amyl alcohol in Saccharomyces cerevisiae. J.Biol.Chem. 275, 10937–10942 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Dickinson J.R., Salgado L.E.J., Hewlins M.J.E.: The catabolism of amino acids to long-chain and complex alcohols in Saccharomyces cerevisiae. J.Biol.Chem. 278, 8028–8034 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Diderich J.A., Schuurmans J.M., Van Gaalen M.C., Kruckeberg A.L., Van Dam K.: A functional analysis if the hexose transporter homologue HXT5 in Saccharomyces cerevisiae. Yeast 18, 1515–1524 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Esposito R.E., Klapholz S.: Meiosis and ascospore development, pp. 211–287 in J.N. Strathern, E.W. Jones, J.R. Broach (Eds): The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance. Cold Spring Harbor Laboratory, Cold Spring Harbor 1981.

    Google Scholar 

  • Feller A., Ramos F., Piérard A., Dubois E.: In Saccharomyces cerevisiae, feedback inhibition of homocitrate synthase isoenzymes by lysine modulates the activation of LYS gene expression by Lys14p. Eur.J.Biochem. 261, 163–170 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Fuge E.K., Braun E.L., Werner-Washbourne M.: Protein synthesis in long-term stationary-phase cultures of Saccharomyces cerevisiae. J.Bacteriol. 176, 5802–5813 (1994).

    PubMed  CAS  Google Scholar 

  • Gimeno C.J., Ljungdahl P.O., Styles C.A., Fink G.R.: Unipolar cell divisions in the yeast Saccharomyces cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68, 1077–1090 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Hancock L.C., Behta R.P., Lopes J.M.: Genomic analysis of the Opi phenotype. Genetics 173, 621–634 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Hauser M., Horn P., Tournu H., Hauser N.C., Hoheisel J.D., Brown A.J.P., Dickinson J.R.: A transcriptome analysis of isoamyl alcohol-induced filamentation in yeast reveals a novel role for Gre2p as isovaleraldehyde reductase. FEMS Yeast Res. 7, 84–92 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M., Ohkuni K., Yamashita I.: An extracellular meiosis-promoting factor in Saccharomyces cerevisiae. Yeast 14, 617–622 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y.W., Kang C.M.: Induction of S. cerevisiae filamentous differentiation by slowed DNA synthesis involves Mec1, Rad53 and Swe1 checkpoint proteins. Mol.Biol.Cell 14, 5116–5124 (2002).

    Article  CAS  Google Scholar 

  • Kern K., Nunn C.D., Pichova A., Dickinson J.R.: Isoamyl alcohol-induced morphological change in Saccharomyces cerevisiae involves increases in mitochondria and cell wall chitin content. FEMS Yeast Res. 5, 43–49 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Kron S.J., Gow N.A.R.: Budding yeast morphogenesis: signaling, cytoskeleton and cell cycle. Curr.Opin.Cell Biol. 7, 845–855 (1995).

    Article  PubMed  CAS  Google Scholar 

  • La Valle R., Wittenberg C.: A role for the Swe1 checkpoint kinase during filamentous growth of Saccharomyces cerevisiae. Genetics 158, 549–562 (2001).

    PubMed  Google Scholar 

  • Liger D., Quevillon-Cheruel S., Sorel I., Bremang M., Blondeau K., Aboulfath I., Janin J., Van Tilbeurgh H., Leulliot N.: Crystal structure of YHI9, the yeast member of the phenazine biosynthesis PhzF enzyme superfamily. Proteins 60, 778–786 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Lorenz M.C., Heitman J.: The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae. EMBO J. 17, 1236–1247 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Lorenz M.C., Cutler N.S., Heitman J.: Characterization of alcohol-induced filamentous growth in Saccharomyces cerevisiae. Mol.Biol.Cell 11, 183–199 (2000).

    PubMed  CAS  Google Scholar 

  • Martinez-Anaya C., Dickinson J.R., Sudbery P.E.: In yeast, the pseudohyphal phenotype induced by isoamyl alcohol results from the operation of the morphogenesis checkpoint. J.Cell Sci. 116, 3423–3431 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Nyunoya H., Lusty C.J.: Sequence of the small subunit of yeast carbamyl phosphate synthetase and identification of its catalytic domain. J.Biol.Chem. 259, 9790–9798 (1984).

    PubMed  CAS  Google Scholar 

  • Ohkuni K., Hayashi M., Yamashita I.: Bicarbonate-mediated social communication stimulates meiosis and sporulation of Saccharomyces cerevisiae. Yeast 14, 623–631 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Påhlman A.-K., Granath K., Ansell R., Hohmann S., Adler L.: The yeast glycerol-3-phosphatases Gpp1 and Gpp2 are required for glycerol biosynthesis and differentially involved in the cellular responses to osmotic, anaerobic and oxidative stress. J.Biol.Chem. 276, 3555–3563 (2001).

    Article  PubMed  Google Scholar 

  • Paulsen I.T., Sliwinski M.K., Nelissen B., Goffeau A., Saier M.H. Jr.: Unified inventory of established and putative transporters encoded within the complete genome of Saccharomyces cerevisiae. FEBS Lett. 430, 116–125 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Perry J.R., Basrai M.A., Steiner H.-Y., Naider F., Becker J.M.: Isolation and characterization of a Saccharomyces cerevisiae peptide transporter gene. Mol.Cell.Biol. 14, 104–115 (1994).

    PubMed  CAS  Google Scholar 

  • Regenberg B., During-Olsen L., Kieland-Brandt M.C., Holmberg S.: Substrate specificity and gene expression of the amino acid permeases in Saccharomyces cerevisiae. Curr.Genet. 36, 317–328 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Rua D., Tobe B.T., Kron S.J.: Cell cycle control of yeast filamentous growth. Curr.Opin.Microbiol. 4, 720–727 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A., Hall M.N., Koller A.: Two FK506 resistance-conferring genes in Saccharomyces cerevisiae, TAT1 and TAT2, encode amino acid permeases mediating tyrosine and tryptophan uptake. Mol.Cell.Biol. 14, 6597–6606 (1994).

    PubMed  CAS  Google Scholar 

  • Schreve J.L., Sin J.K., Garrett J.M.: The Saccharomyces cerevisiae YCC5 (YCL025c) gene encodes an amino acid permease, Agp1p, which transports asparagine and glutamine. J.Bacteriol. 180, 2556–2559 (1998).

    PubMed  CAS  Google Scholar 

  • Sipiczki M., Takeo K., Yamaguchi M., Yoshida S., Miklos I.: Environmentally controlled dimorphic cycle in a fission yeast. Microbiology 144, 1319–1330 (1998a).

    Article  PubMed  CAS  Google Scholar 

  • Sipiczki M., Takeo K., Grallert A.: Growth polarity transitions in a dimorphic fission yeast. Microbiology 144, 3475–3485 (1998b).

    PubMed  CAS  Google Scholar 

  • Stark M.J.R.: Protein phosphorylation and dephosphorylation, pp. 284–375 in J.R. Dickinson, M. Schweizer (Eds): The Metabolism and Molecular Physiology of Saccharomyces cerevisiae, 2nd ed. CRC Press, Boca Raton 2004.

    Google Scholar 

  • Vewaal R., Paalman J.W.G., Hogenkamp A., Verkleij A.J., Verrips C.T., Boonstra J.: HXT5 expression is determined by growth rates in Saccharomyces cerevisiae. Yeast 19, 1029–1038 (2002).

    Article  CAS  Google Scholar 

  • Warringer J., Blomberg A.: Involvement of yeast YOL151/GRE2 in ergosterol metabolism. Yeast 23, 389–398 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Winge D.R., Nielson K.B., Gray W.R., Hamer D.H., Karin M., Najarian R., Haslinger A., Valenzuela P., Welch J., Fogel S.: Yeast metallothionein. Sequence and metal-binding properties. J.Biol.Chem. 260, 14464–14470 (1985).

    PubMed  CAS  Google Scholar 

  • Wu X., Jiang Y.W.: Possible integration of upstream signals at Cdc42 in filamentous differentiation of S. cerevisiae. Yeast 22, 1069–1077 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Dickinson.

Additional information

Dedicated to the memory of Anna Kocková-Kratochvílová

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickinson, J.R. Filament formation in Saccharomyces cerevisiae — a review. Folia Microbiol 53, 3–14 (2008). https://doi.org/10.1007/s12223-008-0001-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-008-0001-6

Keywords

Navigation