Skip to main content
Log in

Extreme Respiratory Sinus Arrhythmia Enables Overwintering Black Bear Survival—Physiological Insights and Applications to Human Medicine

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

American black bears survive winter months without food and water while in a mildly hypothermic, hypometabolic, and inactive state, yet they appear to be able to return to near-normal systemic function within minutes of arousal. This study’s goal was to characterize the cardiovascular performance of overwintering black bears and elicit the underlying mechanisms enabling survival. Mid-winter cardiac electrophysiology was assessed in four wild black bears using implanted data recorders. Paired data from early and late winter were collected from 37 wild bears, which were anesthetized and temporarily removed from their dens to record cardiac electrophysiological parameters (12-lead electrocardiograms) and cardiac dimensional changes (echocardiography). Left ventricular thickness, primary cardiac electrophysiological parameters, and cardiovascular response to threats (“fight or flight” response) were preserved throughout winter. Dramatic respiratory sinus arrhythmias were recorded (cardiac cycle length variations up to 865%) with long sinus pauses between breaths (up to 13 s). The accelerated heart rate during breathing efficiently transports oxygen, with the heart “resting” between breaths to minimize energy usage. This adaptive cardiac physiology may have broad implications for human medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Austen, M. L., & Wilson, G. V. (2001). Increased vagal tone during winter in subsyndromal seasonal affective disorder. Biological Psychiatry, 50(1), 28–34.

    Article  CAS  PubMed  Google Scholar 

  2. Berntson, C. G., Cacioppo, J. T., & Quigley, K. S. (1993). Respiratory sinus arrhythmia: Autonomic origins, physiological mechanisms, and psychophysiological implications. Psychophysiology, 30(2), 183–196.

    Article  CAS  PubMed  Google Scholar 

  3. Bolling, S. F., Benedict, M. B., Tramontini, N. L., Kilgore, K. S., Harlow, H. H., Su, T. P., et al. (1998). Hibernation triggers and myocardial protection. Circulation, 98(19 Suppl), II220–II223.

    CAS  PubMed  Google Scholar 

  4. Chien, S., Diana, J. N., Oeltgen, P. R., Todd, E. P., O’Connor, W. N., & Chitwood, W. R., Jr. (1989). Eighteen to 37 hours preservation of major organs using a new autoperfusion multiorgan preparation. Annals of Thoracic Surgery, 47(6), 860–867.

    Article  CAS  PubMed  Google Scholar 

  5. Dausmann, K. H., Glos, J., Ganzhorn, J. U., & Heldmaier, G. (2004). Hibernation in a tropical primate. Nature, 429(6994), 825–826.

    Article  CAS  PubMed  Google Scholar 

  6. Folk, G. E., Jr., Folk, M. A., & Minor, J. J. (1972). Physiological condition of three species of bears in winter dens. In S. Herrero (Ed.), Bears: Their biology and management (New Series Publication No. 23) (pp. 107–124). Morges: IUCN.

    Google Scholar 

  7. Fedorov, V. V., Li, L., Glukhov, A., Shischkina, I., Aliev, R. R., Mikheeva, T., et al. (2005). Hibernator Citellus undulates maintains safe cardiac conduction and is protected against tachyarrhythmias during extreme hypothermia: possible role of Cx43 and Cx45 up-regulation. Heart Rhythm, 2(9), 966–975.

    Article  PubMed  Google Scholar 

  8. Geiser, F., & Ruf, T. (1995). Hibernation versus daily torpor in mammals and birds: Physiological variables and classification of torpor patterns. Physiological Zoology, 68(6), 935–966.

    Google Scholar 

  9. Giles, J. (2004). Could astronauts sleep their way to the stars? News@Nature.com.

  10. Harding, J. D., Piacentino, V., III, Gaughan, J. P., Houser, S. R., & Margulies, K. B. (2001). Electrophysiological alterations after mechanical circulatory support in patients with advanced cardiac failure. Circulation, 104(11), 1241–1247.

    Article  CAS  PubMed  Google Scholar 

  11. Harlow, H. J., Lohuis, T., Anderson-Sprecher, R. C., & Beck, T. D. (2004). Body surface temperature of hibernating black bears may be related to periodic muscle activity. Journal of Mammalogy, 85(3), 414–419.

    Article  Google Scholar 

  12. Harlow, H. J., Lohuis, T., Beck, T. D. I., & Iaizzo, P. A. (2001). Muscle strength in overwintering bears. Nature, 409(6823), 997.

    Article  CAS  PubMed  Google Scholar 

  13. Harris, M. B., & Milsom, W. K. (1995). Parasympathetic influence on heart rate in euthermic and hibernating ground squirrels. Journal of Experimental Biology, 198(Pt 4), 931–937.

    CAS  PubMed  Google Scholar 

  14. Hellgren, E. C. (1998). Physiology of hibernation in bears. Ursus, 10, 467–477.

    Google Scholar 

  15. Hirsch, J. A., & Bishop, B. (1981). Respiratory sinus arrhythmia in humans: How breathing pattern modulates heart rate. American Journal of Physiology: Heart and Circulatory Physiology, 241(4), H620–H629.

    CAS  Google Scholar 

  16. Hong, J., Sigg, D. C., Coles, J. A., Jr., Oeltgen, P. R., Harlow, H. J., Soule, C. L., et al. (2005). Hibernation induction trigger reduces hypoxic damage of swine skeletal muscle. Muscle and Nerve, 32(2), 200–207.

    Article  PubMed  Google Scholar 

  17. Khositseth, A., Hejlik, J., Shen, W. K., & Ackerman, J. M. (2005). Epinephrine-induced T-wave notching in congenital long QT syndrome. Heart Rhythm, 2(2), 141–146.

    Article  PubMed  Google Scholar 

  18. Kondo, N., Sekijima, T., Kondo, J., Takamatsu, N., Tohya, K., & Ohtsu, T. (2006). Circannual control of hibernation by HP complex in the brain. Cell, 125(1), 161–172.

    Article  CAS  PubMed  Google Scholar 

  19. Laske, T. G., Harlow, H. J., Werder, J. C., Marshall, M. T., & Iaizzo, P. A. (2005). High capacity implantable data recorders: System design and experience in canines and denning black bears. Journal of Biomechanical Engineering, 127(6), 964–971.

    Article  PubMed  Google Scholar 

  20. Levine, B. D., Zuckerman, J. H., & Pawelczyk, J. A. (1997). Cardiac atrophy after bed-rest deconditioning. Circulation, 96(2), 517–525.

    CAS  PubMed  Google Scholar 

  21. Linnell, J. D. C., Swenson, J. E., & Andersen, R. (2000). How vulnerable are denning bears to disturbance? Wildlife Society Bulletin, 28, 400–413.

    Google Scholar 

  22. Lohuis, T., Beck, T. D. I., & Harlow, H. J. (2005). Hibernating black bears have blood chemistry and plasma amino acid profiles that are indicative of long-term adaptive fasting. Canadian Journal of Zoology, 83(9), 1257–1263.

    Article  CAS  Google Scholar 

  23. Lohuis, T. D., Harlow, H. J., Beck, T. D. I., & Iaizzo, P. A. (2007). Hibernating bears conserve muscle strength and maintain fatigue resistance. Physiological and Biochemical Zoology, 80(3), 257–269.

    Article  CAS  PubMed  Google Scholar 

  24. Milsom, W. K., Zimmer, M. B., & Harris, M. B. (1999). Regulation of cardiac rhythm in hibernating mammals. Comparative Biochemistry and Physiology, 124(4), 383–391.

    Article  CAS  PubMed  Google Scholar 

  25. Moody, G. B., Mark, R. G., Zoccola, A., & Mantero, S. (1985). Derivation of respiratory signals from multi-lead ECGs. Computers in Cardiology, 12, 113–116.

    Google Scholar 

  26. Nelson, O. L., McEwen, M. M., Robbins, C. T., Felicetti, L., & Christensen, W. F. (2003). Evaluation of cardiac function in active and hibernating grizzly bears. Journal of the American Veterinary Medical Association, 223(8), 1170–1175.

    Article  PubMed  Google Scholar 

  27. Nelson, O. L., Robbins, C. T., Wu, Y., & Granzier, H. (2008). Titon isoform switching is a major adaptive response in hibernating grizzly bears. American Journal of Physiology. Heart and Circulatory Physiology, 295(1), 366–371.

    Article  Google Scholar 

  28. Novotny, T., Sisakova, M., Kadlecova, J., Florianova, A., Semrad, B., Gaillyova, R., et al. (2004). Occurrence of notched T wave in healthy family members with the long QT interval syndrome. American Journal of Cardiology, 94(6), 808–811.

    Article  PubMed  Google Scholar 

  29. Perhonen, M. A., Franco, F., Lane, L. D., Buckey, J. C., Blomqvist, C. G., Zerwekh, J. E., et al. (2001). Cardiac atrophy after bed rest and space flight. Journal of Applied Physiology, 91(2), 645–653.

    CAS  PubMed  Google Scholar 

  30. Perhonen, M. A., Zuckerman, J. H., & Levine, B. D. (2001). Deterioration of left ventricular chamber performance after bed rest: “cardiovascular deconditioning” or hypovolemia? Circulation, 103(14), 1851–1857.

    CAS  PubMed  Google Scholar 

  31. Porges, S. W., & Byrne, E. (1992). Research methods for measurement of heart rate and respiration. Biological Psychology, 34(2–3), 93–130.

    Article  CAS  PubMed  Google Scholar 

  32. Razeghi, P., & Taegtmeyer, H. (2006). Hypertrophy and atrophy of the heart: The other side of remodeling. Annals of the New York Academy of Sciences, 1080, 110–119.

    Article  CAS  PubMed  Google Scholar 

  33. Rogers, L. L., & Durst, S. C. (1987). Evidence that black bears reduce peripheral blood flow during hibernation. Journal of Mammalogy, 68(4), 876–878.

    Article  Google Scholar 

  34. Sigg, D. C., Coles, Jr., J. A., Gallagher, W. J., Oeltgen, P. R., & Iaizzo, P. A. (2001). Opioid preconditioning: myocardial function and energy metabolism. Annals of Thoracic Surgery, 72, 1576–1582.

    Google Scholar 

  35. Spaak, J., Montmerle, S., Sundblad, P., & Linnarsson, D. (2005). Long-term bed rest-induced reductions in stroke volume during rest and exercise: Cardiac dysfunction vs. volume depletion. Journal of Applied Physiology, 98(2), 648–654.

    Article  PubMed  Google Scholar 

  36. Summers, R. L., Martin, D. S., Meck, J. V., & Coleman, T. G. (2005). Mechanism of spaceflight-induced changes in left ventricular mass. American Journal of Cardiology, 95(9), 1128–1130.

    Article  PubMed  Google Scholar 

  37. Tinker, D. B., Harlow, H. J., & Beck, T. D. I. (1998). Protein use and muscle-fiber changes in free-ranging, hibernating black bears. Physiological Zoology, 71(4), 414–424.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation, Minnesota Department of Natural Resources, University of Minnesota Institute for Engineering in Medicine, Colorado Wildlife Management, Wyoming Department of Natural Resources, and Medtronic, Inc.

We thank Pamela L. Coy, Karen V. Noyce, Brian Dirks, Barb Olson, Lixue Yin, Elizabeth Bohn, and Jin Back Hong for technical assistance and Monica Mahre for assistance with manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Iaizzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laske, T.G., Harlow, H.J., Garshelis, D.L. et al. Extreme Respiratory Sinus Arrhythmia Enables Overwintering Black Bear Survival—Physiological Insights and Applications to Human Medicine. J. of Cardiovasc. Trans. Res. 3, 559–569 (2010). https://doi.org/10.1007/s12265-010-9185-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-010-9185-7

Keywords

Navigation