Skip to main content
Log in

Validation of Human ApoB and ApoAI Immunoturbidity Assays for Non-human Primate Dyslipidemia and Atherosclerosis Research

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Emerging evidence suggests apolipoprotein B (apoB) and apolipoprotein AI (apoAI) are strong risk predictors for atherosclerosis. Non-human primates (NHP), including rhesus monkeys, cynomolgus monkeys, and African green monkeys, are important preclinical species for studying dyslipidemia and atherosclerosis as they more closely resemble humans in lipid metabolism and disease physiology compared to lower species such as rodents. However, no commercial assays are currently available for measuring apoB and apoAI in NHP. We therefore evaluated analytical methods for routinely measuring apoB and apoAI in our NHP dyslipidemia and atherosclerosis research. Since NHP apoB and apoAI sequences are likely highly similar to human, we focused on the clinically validated and widely utilized human apoB and apoAI immunoturbidity assays. We carried out technical validation of these assays with NHP samples and leveraged orthogonal technical platforms including mass spectrometry, independent ELISA assay, and absolute quantitation via SDS–PAGE for further characterization. Analysis of purified lipoproteins demonstrated that the immunoturbidity assays detect NHP apoAI and apoB, with good dilution linearity and spike recovery from NHP plasma. Orthogonal studies showed apoAI correlated with protein concentration and apoB levels correlated with LC/MS and an independent ELISA. NHP samples from a drug treatment study were analyzed with the immunoturbidity assays and levels of apoB and apoAI fit our understanding of biology and expectations from literature. These studies serve as important technical and biological validation of the immunoturbidity assays for NHP samples, and demonstrate that these assays provide a high-throughput, fully automated analytical platform for NHP samples. Our studies pave the way for future translational research in NHP for developing therapies for treating dyslipidemia and atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kathiresan, S., Otvos, J. D., Sullivan, L. M., Keyes, M. J., Schaefer, E. J., Wilson, P. W., et al. (2006). Increased small low-density lipoprotein particle number: a prominent feature of the metabolic syndrome in the Framingham Heart Study. Circulation, 113, 20–29.

    Article  PubMed  CAS  Google Scholar 

  2. Barter, P. J., Ballantyne, C. M., Carmena, R., Castro Cabezas, M., Chapman, M. J., Couture, P., et al. (2006). Apo B versus cholesterol in estimating cardiovascular risk and in guiding therapy: report of the thirty-person/ten-country panel. Journal of Internal Medicine, 259, 247–258.

    Article  PubMed  CAS  Google Scholar 

  3. Contois, J. H., McNamara, J. R., Lammi-Keefe, C. J., Wilson, P. W., Massov, T., & Schaefer, E. J. (1996). Reference intervals for plasma apolipoprotein B determined with a standardized commercial immunoturbidimetric assay: results from the Framingham Offspring Study. Clinical Chemistry, 42, 515–523.

    PubMed  CAS  Google Scholar 

  4. Contois, J., McNamara, J. R., Lammi-Keefe, C., Wilson, P. W., Massov, T., & Schaefer, E. J. (1996). Reference intervals for plasma apolipoprotein A-1 determined with a standardized commercial immunoturbidimetric assay: results from the Framingham Offspring Study. Clinical Chemistry, 42, 507–514.

    PubMed  CAS  Google Scholar 

  5. Walldius, G., & Jungner, I. (2007). Apolipoprotein A-I versus HDL cholesterol in the prediction of risk for myocardial infarction and stroke. Current Opinion in Cardiology, 22, 359–367.

    Article  PubMed  Google Scholar 

  6. Strong, J. P., & McGill, H. C., Jr. (1967). Diet and experimental atherosclerosis in baboons. The American Journal of Pathology, 50, 669–690.

    PubMed  CAS  Google Scholar 

  7. Clarkson, T. B., Hamm, T. E., Bullock, B. C., & Lehner, N. D. (1976). Atherosclerosis in old world monkeys. Primates in Medicine, 9, 66–89.

    PubMed  CAS  Google Scholar 

  8. Rudel, L. L., Bond, M. G., & Bullock, B. C. (1985). LDL heterogeneity and atherosclerosis in nonhuman primates. Annals of the New York Academy of Sciences, 454, 248–253.

    Article  PubMed  CAS  Google Scholar 

  9. Rudel, L. L. (1997). Genetic factors influence the atherogenic response of lipoproteins to dietary fat and cholesterol in nonhuman primates. Journal of the American College of Nutrition, 16, 306–312.

    PubMed  CAS  Google Scholar 

  10. Rudel, L. L., Reynolds, J. A., & Bullock, B. C. (1981). Nutritional effects on blood lipid and HDL cholesterol concentrations in two subspecies of African green monkeys (Cercopithecus aethiops). Journal of Lipid Research, 22, 278–286.

    PubMed  CAS  Google Scholar 

  11. Mahley, R. W., Innerarity, T. L., Rall, S. C., Jr., & Weisgraber, K. H. (1984). Plasma lipoproteins: apolipoprotein structure and function. Journal of Lipid Research, 25, 1277–1294.

    PubMed  CAS  Google Scholar 

  12. Law, A., & Scott, J. (1990). A cross-species comparison of the apolipoprotein B domain that binds to the LDL receptor. Journal of Lipid Research, 31, 1109–1120.

    PubMed  CAS  Google Scholar 

  13. O’hUigin, C., Chan, L., & Li, W. H. (1990). Cloning and sequencing of bovine apolipoprotein A-I cDNA and molecular evolution of apolipoproteins A-I and B-100. Molecular Biology and Evolution, 7, 327–339.

    PubMed  Google Scholar 

  14. Collet, X., Marcel, Y. L., Tremblay, N., Lazure, C., Milne, R. W., Perret, B., et al. (1997). Evolution of mammalian apolipoprotein A-I and conservation of antigenicity: correlation with primary and secondary structure. Journal of Lipid Research, 38, 634–644.

    PubMed  CAS  Google Scholar 

  15. Siedel, J., Schiefer, S., Rosseneu, M., Bergeaud, R., De Keersgieter, W., Pautz, B., et al. (1988). Immunoturbidimetric method for routine determinations of apolipoproteins A-I, A-II, and B in normo- and hyperlipemic sera compared with immunonephelometry. Clinical Chemistry, 34, 1821–1825.

    PubMed  CAS  Google Scholar 

  16. Rifai, N., & King, M. E. (1986). Immunoturbidimetric assays of apolipoproteins A, AI, AII, and B in serum. Clinical Chemistry, 32, 957–961.

    PubMed  CAS  Google Scholar 

  17. Naito, H. K. (1988). Reliability of lipid, lipoprotein, and apolipoprotein measurements. Clinical Chemistry, 34, B84–B94.

    PubMed  CAS  Google Scholar 

  18. Albers, J. J., Marcovina, S. M., & Kennedy, H. (1992). International Federation of Clinical Chemistry standardization project for measurements of apolipoproteins A-I and B. II. Evaluation and selection of candidate reference materials. Clinical Chemistry, 38, 658–662.

    PubMed  CAS  Google Scholar 

  19. Marcovina, S. M., Albers, J. J., Kennedy, H., Mei, J. V., Henderson, L. O., & Hannon, W. H. (1994). International Federation of Clinical Chemistry standardization project for measurements of apolipoproteins A-I and B. IV. Comparability of apolipoprotein B values by use of International Reference Material. Clinical Chemistry, 40, 586–592.

    PubMed  CAS  Google Scholar 

  20. Borque, L., Maside, C., Rus, A., & del Cura, J. (1993). Automated determination of apolipoproteins A-I and B with an improved immunoturbidimetric assay using Boehringer Mannheim and Hitachi analyzer systems. Clinical Biochemistry, 26, 471–476.

    Article  PubMed  CAS  Google Scholar 

  21. Dallinga-Thie, G. M., Berk, P., II, Bootsma, A. H., & Jansen, H. (2004). Atorvastatin decreases apolipoprotein C-III in apolipoprotein B-containing lipoprotein and HDL in type 2 diabetes: a potential mechanism to lower plasma triglycerides. Diabetes Care, 27, 1358–1364.

    Article  PubMed  CAS  Google Scholar 

  22. Dullaart, R. P., Perton, F., Sluiter, W. J., de Vries, R., & van Tol, A. (2008). Plasma lecithin: cholesterol acyltransferase activity is elevated in metabolic syndrome and is an independent marker of increased carotid artery intima media thickness. The Journal of Clinical Endocrinology and Metabolism, 93, 4860–4866.

    Article  PubMed  CAS  Google Scholar 

  23. Szanto, A., Harangi, M., Seres, I., Paragh, G., & Zeher, M. (2010). Decreased human paraoxonase-1 activity in patients with Sjogren’s syndrome. International Immunology, 22, 605–609.

    Article  PubMed  CAS  Google Scholar 

  24. Sniderman, A., Teng, B., & Jerry, M. (1975). Determination of B protein of low density lipoprotein directly in plasma. Journal of Lipid Research, 16, 465–467.

    PubMed  CAS  Google Scholar 

  25. Rader, D. J., Davidson, M. H., Caplan, R. J., & Pears, J. S. (2003). Lipid and apolipoprotein ratios: association with coronary artery disease and effects of rosuvastatin compared with atorvastatin, pravastatin, and simvastatin. American journal of cardiology, 91, 20C–23C. discussion 23C–24C.

    Article  PubMed  CAS  Google Scholar 

  26. Quinet, E. M., Basso, M. D., Halpern, A. R., Yates, D. W., Steffan, R. J., Clerin, V., et al. (2009). LXR ligand lowers LDL cholesterol in primates, is lipid neutral in hamster, and reduces atherosclerosis in mouse. Journal of Lipid Research, 50, 2358–2370.

    Article  PubMed  CAS  Google Scholar 

  27. Ito, B. R., Zhang, B. H., Cable, E. E., Song, X., Fujitaki, J. M., MacKenna, D. A., et al. (2009). Thyroid hormone beta receptor activation has additive cholesterol lowering activity in combination with atorvastatin in rabbits, dogs and monkeys. British Journal of Pharmacology, 156, 454–465.

    Article  PubMed  CAS  Google Scholar 

  28. Schonfeld, G., Lees, R. S., George, P. K., & Pfleger, B. (1974). Assay of total plasma apolipoprotein B concentration in human subjects. Journal of Clinical Investigation, 53, 1458–1467.

    Article  PubMed  CAS  Google Scholar 

  29. Karlin, J. B., Juhn, D. J., Fless, G., Scanu, A. M., & Rubenstein, A. H. (1978). Measurment of rhesus monkey (Macaca mulatta) apolipoprotein B in serum by radioimmunoassay: comparison of immunoreactivities of rhesus and human low density lipoproteins. Journal of Lipid Research, 19, 197–206.

    PubMed  CAS  Google Scholar 

  30. Pape, M. E., Castle, C. K., Murray, R. W., Funk, G. M., Hunt, C. E., Marotti, K. R., et al. (1991). Apo B metabolism in the cynomolgus monkey: evidence for post-transcriptional regulation. Biochimica et Biophysica Acta, 1086, 326–334.

    PubMed  CAS  Google Scholar 

  31. Mahley, R. W., & Innerarity, T. L. (1983). Lipoprotein receptors and cholesterol homeostasis. Biochimica et Biophysica Acta, 737, 197–222.

    PubMed  CAS  Google Scholar 

  32. Koritnik, D. L., & Rudel, L. L. (1983). Measurement of apolipoprotein A-I concentration in nonhuman primate serum by enzyme-linked immunosorbent assay (ELISA). Journal of Lipid Research, 24, 1639–1645.

    PubMed  CAS  Google Scholar 

  33. Brewer, H. B., Jr., Lux, S. E., Ronan, R., & John, K. M. (1972). Amino acid sequence of human apoLp-Gln-II (apoA-II), an apolipoprotein isolated from the high-density lipoprotein complex. Proceedings of the National Academy of Sciences of the United States of America, 69, 1304–1308.

    Article  PubMed  CAS  Google Scholar 

  34. Cheung, M. C., & Albers, J. J. (1979). Distribution of cholesterol and apolipoprotein A-I and A-II in human high density lipoprotein subfractions separated by CsCl equilibrium gradient centrifugation: evidence for HDL subpopulations with differing A-I/A-II molar ratios. Journal of Lipid Research, 20, 200–207.

    PubMed  CAS  Google Scholar 

  35. Myerson, M., Ngai, C., Jones, J., Holleran, S., Ramakrishnan, R., Berglund, L., et al. (2005). Treatment with high-dose simvastatin reduces secretion of apolipoprotein B-lipoproteins in patients with diabetic dyslipidemia. Journal of Lipid Research, 46, 2735–2744.

    Article  PubMed  CAS  Google Scholar 

  36. Ballantyne, C. M., Bertolami, M., Hernandez Garcia, H. R., Nul, D., Stein, E. A., Theroux, P., et al. (2006). Achieving LDL cholesterol, non-HDL cholesterol, and apolipoprotein B target levels in high-risk patients: Measuring Effective Reductions in Cholesterol Using Rosuvastatin therapY (MERCURY) II. American Heart Journal, 151(975), e1–e9.

    PubMed  Google Scholar 

  37. Simon, J. A., Lin, F., Hulley, S. B., Blanche, P. J., Waters, D., Shiboski, S., et al. (2006). Phenotypic predictors of response to simvastatin therapy among African-Americans and Caucasians: the Cholesterol and Pharmacogenetics (CAP) Study. The American Journal of Cardiology, 97, 843–850.

    Article  PubMed  CAS  Google Scholar 

  38. Sparrow, C. P., Burton, C. A., Hernandez, M., Mundt, S., Hassing, H., Patel, S., et al. (2001). Simvastatin has anti-inflammatory and antiatherosclerotic activities independent of plasma cholesterol lowering. Arteriosclerosis, Thrombosis, and Vascular Biology, 21, 115–121.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Sang Ho Lee for assistance with FPLC analysis on lipoprotein particles and Doug Johns for discussions. We thank Wei Wang for bioinformatics support on NHP sequence assembly and comparison to human. For declaration of conflicting interests, all authors are employees and may hold stocks or stock options of Merck & Co.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhu Chen or Amy M. Flattery.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

FPLC analysis of the LDL preparations showing their size difference. The LDL preparation from the ultracentrifugation separation method from African green monkeys, rhesus monkeys, and cynomolgus monkeys was further fractionated by FPLC, in the amount of 207 mg, 128 mg, and 113 mg protein input, respectively. x-axis is retention time, and y-axis is absorbance at 600 nm resulted from the in-line colorimetric detection of total cholesterol. Retention time of the LDL peak in each sample is noted on the graph. A small amount of VLDL in the preparation is also noted (PPT 79 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Strack, A.M., Stefanni, A.C. et al. Validation of Human ApoB and ApoAI Immunoturbidity Assays for Non-human Primate Dyslipidemia and Atherosclerosis Research. J. of Cardiovasc. Trans. Res. 4, 373–383 (2011). https://doi.org/10.1007/s12265-011-9264-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-011-9264-4

Keywords

Navigation