Skip to main content

Advertisement

Log in

A Chemical Biology Approach to Myocardial Regeneration

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Heart failure is one of the major causes of death in the Western world because cardiac muscle loss is largely irreversible and can lead to a relentless decline in cardiac function. Novel therapies are needed since the only therapy to effectively replace lost myocytes today is transplantation of the entire heart. The advent of embryonic and induced pluripotent stem cell (ESC/iPSC) technologies offers the unprecedented possibility of devising cell replacement therapies for numerous degenerative disorders. Not only are ESCs and iPSCs a plausible source of cardiomyocytes in vitro for transplantation, they are also useful tools to elucidate the biology of stem cells that reside in the adult heart and define signaling molecules that might enhance the limited regenerative capability of the adult human heart. Here, we review the extracellular factors that control stem cell cardiomyogenesis and describe new approaches that combine embryology with stem cell biology to discover drug-like small molecules that stimulate cardiogenesis and potentially contribute to the development of pharmaceutical strategies for heart muscle regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. AHA (2010). AHA Update 2010. http://www.aha.org.

  2. Olson, E. N., & Schneider, M. D. (2003). Sizing up the heart: development redux in disease. Genes & Development, 17, 1937–1956.

    Article  CAS  Google Scholar 

  3. Kehat, I., Gepstein, A., Spira, A., Itskovitz-Eldor, J., & Gepstein, L. (2002). High-resolution electrophysiological assessment of human embryonic stem cell-derived cardiomyocytes: a novel in vitro model for the study of conduction. Circulation Research, 91, 659–661.

    Article  PubMed  CAS  Google Scholar 

  4. Binah, O., et al. (2007). Functional and developmental properties of human embryonic stem cells-derived cardiomyocytes. Journal of Electrocardiology, 40, S192–S196.

    Article  PubMed  Google Scholar 

  5. Kita-Matsuo, H., et al. (2009). Lentiviral vectors and protocols for creation of stable hESC lines for fluorescent tracking and drug resistance selection of cardiomyocytes. PLoS ONE, 4, e5046.

    Article  PubMed  Google Scholar 

  6. Liu, J., Fu, J. D., Siu, C. W., & Li, R. A. (2007). Functional sarcoplasmic reticulum for calcium handling of human embryonic stem cell-derived cardiomyocytes: insights for driven maturation. Stem cells (Dayton, Ohio), 25, 3038–3044.

    Article  CAS  Google Scholar 

  7. Dolnikov, K., et al. (2006). Functional properties of human embryonic stem cell-derived cardiomyocytes: intracellular Ca2+ handling and the role of sarcoplasmic reticulum in the contraction. Stem cells (Dayton, Ohio), 24, 236–245.

    Article  CAS  Google Scholar 

  8. Laflamme, M. A., et al. (2005). Formation of human myocardium in the rat heart from human embryonic stem cells. The American Journal of Pathology, 167, 663–671.

    Article  PubMed  CAS  Google Scholar 

  9. Germanguz, I., et al. (2011). Molecular characterization and functional properties of cardiomyocytes derived from human inducible pluripotent stem cells. J Cell Mol Med, 15, 38–51.

    Article  PubMed  CAS  Google Scholar 

  10. Laflamme, M. A., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25, 1015–1024.

    Article  PubMed  CAS  Google Scholar 

  11. van Laake, L. W., Passier, R., Doevendans, P. A., & Mummery, C. L. (2008). Human embryonic stem cell-derived cardiomyocytes and cardiac repair in rodents. Circulation Research, 102, 1008–1010.

    Article  PubMed  Google Scholar 

  12. Xu, C., Police, S., Rao, N., & Carpenter, M. K. (2002). Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circulation Research, 91, 501–508.

    Article  PubMed  CAS  Google Scholar 

  13. Yang, L., et al. (2008). Human cardiovascular progenitor cells develop from a KDR + embryonic-stem-cell-derived population. Nature, 453, 524–528.

    Article  PubMed  CAS  Google Scholar 

  14. Bergmann, O., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science, 324, 98–102.

    Article  PubMed  CAS  Google Scholar 

  15. Hsieh, P. C., et al. (2007). Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nature Medicine, 13, 970–974.

    Article  PubMed  CAS  Google Scholar 

  16. Bersell, K., Arab, S., Haring, B., & Kuhn, B. (2009). Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell, 138, 257–270.

    Article  PubMed  CAS  Google Scholar 

  17. Kuhn, B., et al. (2007). Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Natural Medicines, 13, 962–969.

    Article  Google Scholar 

  18. Zhang, Y., et al. (2010). Dedifferentiation and proliferation of mammalian cardiomyocytes. PLoS One, 5, e12559.

    Article  PubMed  Google Scholar 

  19. Wojakowski, W., et al. (2004). Mobilization of CD34/CXCR4+, CD34/CD117+, c-met + stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation, 110, 3213–3220.

    Article  PubMed  CAS  Google Scholar 

  20. Limana, F., et al. (2010). Myocardial infarction induces embryonic reprogramming of epicardial c-kit(+) cells: role of the pericardial fluid. J Mol Cell Cardiol, 48, 609–618.

    Article  PubMed  CAS  Google Scholar 

  21. Di Meglio, F., et al. (2010). Epicardial cells are missing from the surface of hearts with ischemic cardiomyopathy: a useful clue about the self-renewal potential of the adult human heart? Int J Cardiol, 145(2), e44–e46.

    Article  PubMed  Google Scholar 

  22. Beltrami, A. P., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114, 763–776.

    Article  PubMed  CAS  Google Scholar 

  23. Oh, H., et al. (2003). Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proceedings of the National Academy of Sciences of the United States of America, 100, 12313–12318.

    Article  PubMed  CAS  Google Scholar 

  24. Laugwitz, K. L., et al. (2005). Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature, 433, 647–653.

    Article  PubMed  CAS  Google Scholar 

  25. Hierlihy, A. M., Seale, P., Lobe, C. G., Rudnicki, M. A., & Megeney, L. A. (2002). The post-natal heart contains a myocardial stem cell population. FEBS Letters, 530, 239–243.

    Article  PubMed  CAS  Google Scholar 

  26. Messina, E., et al. (2004). Isolation and expansion of adult cardiac stem cells from human and murine heart. Circulation Research, 95, 911–921.

    Article  PubMed  CAS  Google Scholar 

  27. Smith, R. R., et al. (2007). Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation, 115, 896–908.

    Article  PubMed  Google Scholar 

  28. Poss, K. D., Wilson, L. G., & Keating, M. T. (2002). Heart regeneration in zebrafish. Science, 298, 2188–2190.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang, M., et al. (2001). Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. Journal of Molecular and Cellular Cardiology, 33, 907–921.

    Article  PubMed  CAS  Google Scholar 

  30. Fransioli, J., et al. (2008). Evolution of the c-kit-positive cell response to pathological challenge in the myocardium. Stem Cells, 26, 1315–1324.

    Article  PubMed  CAS  Google Scholar 

  31. Kubo, H., et al. (2008). Increased cardiac myocyte progenitors in failing human hearts. Circulation, 118, 649–657.

    Article  PubMed  Google Scholar 

  32. Raya, A., et al. (2003). Activation of Notch signaling pathway precedes heart regeneration in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 100(Suppl 1), 11889–11895.

    Article  PubMed  CAS  Google Scholar 

  33. Kikuchi, K., et al. (2010). Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature, 464, 601–605.

    Article  PubMed  CAS  Google Scholar 

  34. Jopling, C., et al. (2010). Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature, 464, 606–609.

    Article  PubMed  CAS  Google Scholar 

  35. MacLellan, W. R., & Schneider, M. D. (2000). Genetic dissection of cardiac growth control pathways. Annual Review of Physiology, 62, 289–320.

    Article  PubMed  CAS  Google Scholar 

  36. Rubart, M., & Field, L. J. (2006). Cardiac regeneration: repopulating the heart. Annual Review of Physiology, 68, 29–49.

    Article  PubMed  CAS  Google Scholar 

  37. Gadue, P., Huber, T. L., Paddison, P. J., & Keller, G. M. (2006). Wnt and TGF-{beta} signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc Natl Acad Sci USA, 103(45), 16806–16811.

    Article  PubMed  CAS  Google Scholar 

  38. Lindsley, R. C., Gill, J. G., Kyba, M., Murphy, T. L., & Murphy, K. M. (2006). Canonical Wnt signaling is required for development of embryonic stem cell-derived mesoderm. Development, 133, 3787–3796.

    Article  PubMed  CAS  Google Scholar 

  39. D'Amour, K. A., et al. (2005). Efficient differentiation of human embryonic stem cells to definitive endoderm. Nature Biotechnology, 23, 1534–1541.

    Article  PubMed  Google Scholar 

  40. Yasunaga, M., et al. (2005). Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nature Biotechnology, 23, 1542–1550.

    Article  PubMed  CAS  Google Scholar 

  41. Willems, E., & Leyns, L. (2008). Patterning of mouse embryonic stem cell-derived pan-mesoderm by Activin A/Nodal and Bmp4 signaling requires Fibroblast Growth Factor activity. Differentiation, 76, 745–759.

    Article  PubMed  CAS  Google Scholar 

  42. Marvin, M. J., Di Rocco, G., Gardiner, A., Bush, S. M., & Lassar, A. B. (2001). Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes & Development, 15, 316–327.

    Article  CAS  Google Scholar 

  43. Schneider, V. A., & Mercola, M. (2001). Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes & Development, 15, 304–315.

    Article  CAS  Google Scholar 

  44. Foley, A. C., Korol, O., Timmer, A. M., & Mercola, M. (2007). Multiple functions of Cerberus cooperate to induce heart downstream of Nodal. Developmental Biology, 303, 57–65.

    Article  PubMed  CAS  Google Scholar 

  45. Foley, A. C., & Mercola, M. (2005). Heart induction by Wnt antagonists depends on the homeodomain transcription factor Hex. Genes & Development, 19, 387–396.

    Article  CAS  Google Scholar 

  46. Naito, A. T., et al. (2006). Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 103, 19812–19817.

    Article  PubMed  CAS  Google Scholar 

  47. Ueno, S., et al. (2007). Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 9685–9690.

    Article  PubMed  CAS  Google Scholar 

  48. Kitamura, R., et al. (2007). Stage-specific role of endogenous Smad2 activation in cardiomyogenesis of embryonic stem cells. Circulation Research, 101, 78–87.

    Article  PubMed  CAS  Google Scholar 

  49. Chen, V. C., Stull, R., Joo, D., Cheng, X., & Keller, G. (2008). Notch signaling respecifies the hemangioblast to a cardiac fate. Nature Biotechnology, 26, 1169–1178.

    Article  PubMed  CAS  Google Scholar 

  50. Qyang, Y., et al. (2007). The renewal and differentiation of Isl1+ cardiovascular progenitors are controlled by a Wnt/beta-catenin pathway. Cell Stem Cell, 1, 165–179.

    Article  PubMed  CAS  Google Scholar 

  51. Kwon, C., et al. (2007). Canonical Wnt signaling is a positive regulator of mammalian cardiac progenitors. Proceedings of the National Academy of Sciences of the United States of America, 104, 10894–10899.

    Article  PubMed  CAS  Google Scholar 

  52. Tirosh-Finkel, L., et al. (2010). BMP-mediated inhibition of FGF signaling promotes cardiomyocyte differentiation of anterior heart field progenitors. Development, 137, 2989–3000.

    Article  PubMed  CAS  Google Scholar 

  53. Campa, V. M., et al. (2008). Notch activates cell cycle reentry and progression in quiescent cardiomyocytes. The Journal of Cell Biology, 183, 129–141.

    Article  PubMed  CAS  Google Scholar 

  54. Collesi, C., Zentilin, L., Sinagra, G., & Giacca, M. (2008). Notch1 signaling stimulates proliferation of immature cardiomyocytes. The Journal of Cell Biology, 183, 117–128.

    Article  PubMed  CAS  Google Scholar 

  55. Xu, Y., Shi, Y., & Ding, S. (2008). A chemical approach to stem-cell biology and regenerative medicine. Nature, 453, 338–344.

    Article  PubMed  CAS  Google Scholar 

  56. Kattman, S. J., et al. (2011). Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell, 8, 228–240.

    Article  PubMed  CAS  Google Scholar 

  57. Zeineddine, D., et al. (2006). Oct-3/4 dose dependently regulates specification of embryonic stem cells toward a cardiac lineage and early heart development. Developmental Cell, 11, 535–546.

    Article  PubMed  CAS  Google Scholar 

  58. Takahashi, T., et al. (2003). Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation, 107, 1912–1916.

    Article  PubMed  CAS  Google Scholar 

  59. Sadek, H., et al. (2008). Cardiogenic small molecules that enhance myocardial repair by stem cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 6063–6068.

    Article  PubMed  CAS  Google Scholar 

  60. Bushway, P. J., Mercola, M., & Price, J. H. (2008). A comparative analysis of standard microtiter plate reading versus imaging in cellular assays. Assay and Drug Development Technologies, 6, 557–567.

    Article  PubMed  CAS  Google Scholar 

  61. Wu, X., Ding, S., Ding, Q., Gray, N. S., & Schultz, P. G. (2004). Small molecules that induce cardiomyogenesis in embryonic stem cells. Journal of the American Chemical Society, 126, 1590–1591.

    Article  PubMed  CAS  Google Scholar 

  62. Wei, Z. L., et al. (2004). Isoxazolyl-serine-based agonists of peroxisome proliferator-activated receptor: design, synthesis, and effects on cardiomyocyte differentiation. Journal of the American Chemical Society, 126, 16714–16715.

    Article  PubMed  CAS  Google Scholar 

  63. Dinsmore, J., et al. (1996). Embryonic stem cells differentiated in vitro as a novel source of cells for transplantation. Cell Transplantation, 5, 131–143.

    Article  PubMed  CAS  Google Scholar 

  64. De Tullio, M. C., & Arrigoni, O. (2004). Hopes, disillusions and more hopes from vitamin C. Cellular and Molecular Life Sciences, 61, 209–219.

    Article  PubMed  Google Scholar 

  65. Bushway, P. J., & Mercola, M. (2006). High-throughput screening for modulators of stem cell differentiation. Methods in Enzymology, 414, 300–316.

    Article  PubMed  CAS  Google Scholar 

  66. Frormann, S. & Jas, G (2002). Natural Products and Combinatorial Chemistry: the comeback of nature in drug discovery. Business Briefing Future Drug Discovery, 84–90.

  67. Rishton, G. M. (2003). Nonleadlikeness and leadlikeness in biochemical screening. Drug Discovery Today, 8, 86–96.

    Article  PubMed  CAS  Google Scholar 

  68. Feher, M., & Schmidt, J. M. (2003). Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. Journal of Chemical Information and Computer Sciences, 43, 218–227.

    PubMed  CAS  Google Scholar 

  69. Hann, M. M., Leach, A. R., & Harper, G. (2001). Molecular complexity and its impact on the probability of finding leads for drug discovery. Journal of Chemical Information and Computer Sciences, 41, 856–864.

    PubMed  CAS  Google Scholar 

  70. Teague, S. J., Davis, A. M., Leeson, P. D., & Oprea, T. (1999). The design of leadlike combinatorial libraries. Angewandte Chemie (International Ed. in English), 38, 3743–3748.

    Article  CAS  Google Scholar 

  71. Newman, D. J., Cragg, G. M., & Snader, K. M. (2003). Natural products as sources of new drugs over the period 1981–2002. Journal of Natural Products, 66, 1022–1037.

    Article  PubMed  CAS  Google Scholar 

  72. Gupta, S., Maurya, M. R., & Subramaniam, S. (2010). Identification of crosstalk between phosphoprotein signaling pathways in RAW 264.7 macrophage cells. PLoS Comput Biol, 6, e1000654.

    Article  PubMed  Google Scholar 

  73. Pradervand, S., Maurya, M. R., & Subramaniam, S. (2006). Identification of signaling components required for the prediction of cytokine release in RAW 264.7 macrophages. Genome Biology, 7, R11.

    Article  PubMed  Google Scholar 

  74. Brill, L. M., et al. (2009). Phosphoproteomic analysis of human embryonic stem cells. Cell Stem Cell, 5, 204–213.

    Article  PubMed  CAS  Google Scholar 

  75. Van Hoof, D., et al. (2009). Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell, 5, 214–226.

    Article  PubMed  Google Scholar 

  76. Chen, B., et al. (2009). Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nature Chemical Biology, 5, 100–107.

    Article  PubMed  CAS  Google Scholar 

  77. Chi, X., et al. (2003). Expression of Nkx2-5-GFP bacterial artificial chromosome transgenic mice closely resembles endogenous Nkx2-5 gene activity. Genesis, 35, 220–226.

    Article  PubMed  CAS  Google Scholar 

  78. Craig, P. N. (1971). Interdependence between physical parameters and selection of substituent groups for correlation studies. Journal of Medicinal Chemistry, 14, 680–684.

    Article  PubMed  CAS  Google Scholar 

  79. Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46, 3–26.

    Article  PubMed  CAS  Google Scholar 

  80. Cashman, J. R., & MacDougall, J. M. (2005). Dynamic medicinal chemistry in the elaboration of morphine-6-glucuronide analogs. Current Topics in Medicinal Chemistry, 5, 585–594.

    Article  PubMed  CAS  Google Scholar 

  81. Domian, I. J., et al. (2009). Generation of functional ventricular heart muscle from mouse ventricular progenitor cells. Science, 326, 426–429.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the NIH (R37HL59502, R33HL088266) and California Institute for Regenerative Medicine (CIRM) (RC1001321) to MM; CIRM (SEED RS1001691) and T Foundation to JRC; and CIRM Training Grant T2-00004 and American Heart Association for postdoctoral grant to EW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Mercola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willems, E., Lanier, M., Forte, E. et al. A Chemical Biology Approach to Myocardial Regeneration. J. of Cardiovasc. Trans. Res. 4, 340–350 (2011). https://doi.org/10.1007/s12265-011-9270-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-011-9270-6

Keywords

Navigation