Skip to main content

Advertisement

Log in

Imaging Cardiac Stem Cell Therapy: Translations to Human Clinical Studies

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Stem cell therapy promises to open exciting new options in the treatment of cardiovascular diseases. Although feasible and clinically safe, the in vivo behavior and integration of stem cell transplants still remain largely unknown. Thus, the development of innovative non-invasive imaging techniques capable of effectively tracking such therapy in vivo is vital for a more in-depth investigation into future clinical applications. Such imaging modalities will not only generate further insight into the mechanisms behind stem cell-based therapy, but also address some major concerns associated with translational cardiovascular stem cell therapy. In the present review, we summarize the principles underlying three major stem cell tracking methods: (1) radioactive labeling for positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging, (2) iron particle labeling for magnetic resonance imaging (MRI), and (3) reporter gene labeling for bioluminescence, fluorescence, MRI, SPECT, and PET imaging. We then discuss recent clinical studies that have utilized these modalities to gain biological insights into stem cell fate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Capewell, S., Ford, E.S., Croft, J.B., et al. (2010). Cardiovascular risk factor trends and potentials for reducing coronary heart disease mortality in the United States of America. Bulletin World Health Organization, 88(2), 120–30.

    Article  Google Scholar 

  2. Gong, Z., & Niklason, L. E. (2011). Use of human mesenchymal stem cells as alternative source of smooth muscle cells in vessel engineering. Methods in Molecular Biology, 698, 279–294.

    Article  PubMed  CAS  Google Scholar 

  3. Mignone, J. L., Kreutziger, K. L., Paige, S. L., et al. (2010). Cardiogenesis from human embryonic stem cells. Circulation Journal, 74(12), 2517–2526.

    Article  PubMed  CAS  Google Scholar 

  4. Schuster, M. D., Kocher, A. A., Seki, T., et al. (2004). Myocardial neovascularization by bone marrow angioblasts results in cardiomyocyte regeneration. American Journal of Physiology. Heart and Circulatory Physiology, 287, H525–H532.

    Article  PubMed  CAS  Google Scholar 

  5. Li, Z., Lee, A., Huang, M., et al. (2009). Imaging survival and function of transplanted cardiac resident stem cells. Journal of the American College of Cardiology, 53(14), 1229–1240.

    Article  PubMed  CAS  Google Scholar 

  6. Li, Z., Wilson, K. D., Smith, B., et al. (2009). Functional and transcriptional characterization of human embryonic stem cell-derived endothelial cells for treatment of myocardial infarction. PLoS ONE, 4(12), e8443.

    Article  PubMed  Google Scholar 

  7. Kocher, A. A., Schuster, M. D., Szabolcs, M. J., et al. (2001). Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature Medicines, 7, 430–436.

    Article  CAS  Google Scholar 

  8. Cho, J., Zhai, P., Maejima, Y., et al. (2011). Myocardial injection with GSK-3β-overexpressing bone marrow-derived mesenchymal stem cells attenuates cardiac dysfunction after myocardial infarction. Circulation Research, 108(4), 478–489.

    Article  PubMed  CAS  Google Scholar 

  9. Phelps, M. E. (2000). Positron emission tomography provides molecular imaging of biological processes. Proceedings of the National Academy of Sciences of the United States of America, 97(16), 9226–9233.

    Article  PubMed  CAS  Google Scholar 

  10. Correa, P. L., Mesquita, C. T., Felix, R. M., et al. (2007). Assessment of intra-arterial injected autologous bone marrow mononuclear cell distribution by radioactive labeling in acute ischemic stroke. Clinical Nuclear Medicine, 32(11), 839–841.

    Article  PubMed  Google Scholar 

  11. Aicher, A., Brenner, W., Zuhayra, M., et al. (2003). Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation, 107, 2134–2139.

    Article  PubMed  Google Scholar 

  12. van der Spoel, T. I., Lee, J. C., Vrijsen, K., et al. (2010). Non-surgical stem cell delivery strategies and in vivo cell tracking to injured myocardium. The International Journal of Cardiovascular Imaging. doi:10.1007/s10554-010-9658-4.

    PubMed  Google Scholar 

  13. Massoud, T. F., & Gambhir, S. S. (2003). Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes & Development, 17, 545–580.

    Article  CAS  Google Scholar 

  14. Bulte, J. W. (2009). In vivo MRI cell tracking: clinical studies. American Journal of Roentgenology, 193(2), 314–325.

    Article  PubMed  Google Scholar 

  15. Bulte, J. W., & Kraitchman, D. L. (2004). Iron oxide MR contrast agents for molecular and cellular imaging. NMR in Biomedicine, 17, 484–499.

    Article  PubMed  CAS  Google Scholar 

  16. Modo, M., Mellodew, K., Cash, D., et al. (2004). Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. Neuroimage, 21, 311–317.

    Article  PubMed  Google Scholar 

  17. Anderson, S. A., Lee, K. K., & Frank, J. A. (2006). Gadolinium-fullerenol as a paramagnetic contrast agent for cellular imaging. Investigative Radiology, 41, 332–338.

    Article  PubMed  Google Scholar 

  18. Li, Z., Suzuki, Y., Huang, M., et al. (2008). Comparison of reporter gene and iron particle labeling for tracking fate of human embryonic stem cells and differentiated endothelial cells in living subjects. Stem Cells, 26(4), 864–873.

    Article  PubMed  CAS  Google Scholar 

  19. Wu, J. C., Tseng, J. R., & Gambhir, S. S. (2004). Molecular imaging of cardiovascular gene products. Journal of Nuclear Cardiology, 11(4), 491–505.

    Article  PubMed  Google Scholar 

  20. Swijnenburg, R. J., Schrepfer, S., Govaert, J. A., et al. (2008). Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proceedings of the National Academy of Sciences of the United States of America, 105(35), 12991–12996.

    Article  PubMed  CAS  Google Scholar 

  21. Cao, F., Lin, S., Xie, X., et al. (2006). In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation, 113, 1005–1014.

    Article  PubMed  Google Scholar 

  22. van der Bogt, K. E., Sheikh, A. Y., Schrepfer, S., et al. (2008). Comparison of different adult stem cell types for treatment of myocardial ischemia. Circulation, 118(14 Suppl), S121–S129.

    Article  PubMed  Google Scholar 

  23. Li, Z., Wu, J. C., Sheikh, A. Y., et al. (2007). Differentiation, survival, and function of embryonic stem cell derived endothelial cells for ischemic heart disease. Circulation, 116, I46–I54.

    PubMed  Google Scholar 

  24. Lee, A. S., Tang, C., Cao, F., et al. (2009). Effects of cell number on teratoma formation by human embryonic stem cells. Cell Cycle, 8(16), 2608–2612.

    Article  PubMed  CAS  Google Scholar 

  25. Cao, F., Wagner, R. A., Wilson, K. D., et al. (2008). Transcriptional and functional profiling of human embryonic stem cell-derived cardiomyocytes. PLoS ONE, 3(10), e3474.

    Article  PubMed  Google Scholar 

  26. Gyöngyösi, M. B. J., Marian, T., Tron, L., et al. (2008). Serial non-invasive in vivo positron emission tomographic (PET) tracking of percutaneously intramyocardially injected autologous porcine mesenchymal stem cells modified for transgene reporter gene expression. Circulation Cardiovasc Imag, 1, 94–103.

    Article  Google Scholar 

  27. Willmann, J. K., Paulmurugan, R., Rodriguez-Porcel, M., et al. (2009). Imaging gene expression in human mesenchymal stem cells: from small to large animals. Radiology, 252, 117–127.

    Article  PubMed  Google Scholar 

  28. Hacein-Bey-Abina, S., Von Kalle, C., Schmidt, M., et al. (2003). LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science, 302, 415–419.

    Article  PubMed  CAS  Google Scholar 

  29. Thyagarajan, B., Liu, Y., Shin, S., et al. (2008). Creation of engineered human embryonic stem cell lines using phiC31 integrase. Stem Cells, 26(1), 119–126.

    Article  PubMed  CAS  Google Scholar 

  30. Chen, I. Y., & Wu, J. C. (2011). Cardiovascular molecular imaging: focus on clinical translation. Circulation, 123, 425–443.

    Article  PubMed  Google Scholar 

  31. Hofmann, M., Wollert, K. C., Meyer, G. P., et al. (2005). Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation, 111(17), 2198–2202.

    Article  PubMed  Google Scholar 

  32. Karpov, R. S., Popov, S. V., Markov, V. A., et al. (2005). Autologous mononuclear bone marrow cells during reparative regeneration after acute myocardial infarction. Bulletin of Experimental Biology and Medicine, 140(5), 640–643.

    Article  PubMed  CAS  Google Scholar 

  33. Kang, W. J., Kang, H. J., Kim, H. S., et al. (2006). Tissue distribution of 18F-FDG-labeled peripheral hematopoietic stem cells after intracoronary administration in patients with myocardial infarction. Journal of Nuclear Medicine, 47(8), 1295–1301.

    PubMed  Google Scholar 

  34. Goussetis, E., Manginas, A., Koutelou, M., et al. (2006). Intracoronary infusion of CD133+ and CD133−CD34+ selected autologous bone marrow progenitor cells in patients with chronic ischemic cardiomyopathy: cell isolation, adherence to the infarcted area, and body distribution. Stem Cells, 24(10), 2279–2283.

    Article  PubMed  CAS  Google Scholar 

  35. Blocklet, D., Toungouz, M., Berkenboom, G., et al. (2006). Myocardial homing of nonmobilized peripheral-blood CD34+ cells after intracoronary injection. Stem Cells, 24(2), 333–336.

    Article  PubMed  Google Scholar 

  36. Penicka, M., Lang, O., Widimsky, P., et al. (2007). One-day kinetics of myocardial engraftment after intracoronary injection of bone marrow mononuclear cells in patients with acute and chronic myocardial infarction. Heart, 93(7), 837–841.

    Article  PubMed  CAS  Google Scholar 

  37. Schächinger, V., Aicher, A., Döbert, N., et al. (2008). Pilot trial on determinants of progenitor cell recruitment to the infarcted human myocardium. Circulation, 18(14), 1425–1432.

    Article  Google Scholar 

  38. Dedobbeleer, C., Blocklet, D., Toungouz, M., et al. (2009). Myocardial homing and coronary endothelial function after autologous blood CD34+ progenitor cells intracoronary injection in the chronic phase of myocardial infarction. Journal of Cardiovascular Pharmacology, 53(6), 480–485.

    Article  PubMed  CAS  Google Scholar 

  39. de Vries, I. J., Lesterhuis, W. J., Barentsz, J. O., et al. (2005). Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nature Biotechnology, 23(11), 1407–1413.

    Article  PubMed  Google Scholar 

  40. Zhu, J., Zhou, L., & XingWu, F. (2006). Tracking neural stem cells in patients with brain trauma. The New England Journal of Medicine, 355(22), 2376–2378.

    Article  PubMed  CAS  Google Scholar 

  41. Callera, F., & de Melo, C. M. (2007). Magnetic resonance tracking of magnetically labeled autologous bone marrow CD34+ cells transplanted into the spinal cord via lumbar puncture technique in patients with chronic spinal cord injury: CD34+ cells’ migration into the injured site. Stem Cells and Development, 16(3), 461–466.

    Article  PubMed  Google Scholar 

  42. Toso, C., Vallee, J. P., Morel, P., et al. (2008). Clinical magnetic resonance imaging of pancreatic islet grafts after iron nanoparticle labeling. American Journal of Transplantation, 8, 701–706.

    Article  PubMed  CAS  Google Scholar 

  43. Karussis, D., Karageorgiou, C., Vaknin-Dembinsky, A., et al. (2010). Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Archives of Neurology, 67(10), 1187–1194.

    Article  PubMed  Google Scholar 

  44. Yaghoubi, S. S., Jensen, M. C., Satyamurthy, N., et al. (2009). Noninvasive detection of therapeutic cytolytic T cells with 18F-FHBG PET in a patient with glioma. Nature Clinical Practice. Oncology, 6(1), 53–58.

    Article  PubMed  CAS  Google Scholar 

  45. Amariglio, N., Hirshberg, A., Scheithauer, B. W., et al. (2009). Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Medicine, 6(2), e1000029.

    Article  PubMed  Google Scholar 

  46. Xie, X., Cao, F., Sheikh, A. Y., et al. (2007). Genetic modification of embryonic stem cells with VEGF enhances cell survival and improves cardiac function. Cloning stem cells. Cloning Stem Cells, 9(4), 549–563. Winter.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Stanford VPUE (WYZ), German Research Foundation (ADE), NIH HL099117 (JCW), and NIH EB009689 (JCW).

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph C. Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W.Y., Ebert, A.D., Narula, J. et al. Imaging Cardiac Stem Cell Therapy: Translations to Human Clinical Studies. J. of Cardiovasc. Trans. Res. 4, 514–522 (2011). https://doi.org/10.1007/s12265-011-9281-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-011-9281-3

Keywords

Navigation