Skip to main content
Log in

Fabrication of large area high density, ultra-low reflection silicon nanowire arrays for efficient solar cell applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

High density vertically aligned and high aspect ratio silicon nanowire (SiNW) arrays have been fabricated on a Si substrate using a template and a catalytic etching process. The template was formed from polystyrene (PS) nanospheres with diameter 30–50 nm and density 1010/cm2, produced by nanophase separation of PS-containing block-copolymers. The length of the SiNWs was controlled by varying the etching time with an etching rate of 12.5 nm/s. The SiNWs have a biomimetic structure with a high aspect ratio (∼100), high density, and exhibit ultra-low reflectance. An ultra-low reflectance of approximately 0.1% was achieved for SiNWs longer than 750 nm. Well-aligned SiNW/poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS) heterojunction solar cells were fabricated. The n-type silicon nanowire surfaces adhered to PEDOT:PSS to form a core-sheath heterojunction structure through a simple and efficient solution process. The large surface area of the SiNWs ensured efficient collection of photogenerated carriers. Compared to planar cells without the nanowire structure, the SiNW/PEDOT:PSS heterojunction solar cell exhibited an increase in short-circuit current density from 2.35 mA/cm2 to 21.1 mA/cm2 and improvement in power conversion efficiency from 0.4% to 5.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cui, Y.; Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001, 291, 851–853.

    Article  CAS  Google Scholar 

  2. Wang, D.; Sheriff, B. A.; McAlpine, M.; Heath, J. R. Development of ultra-high density silicon nanowire arrays for electronics applications. Nano Res. 2008, 1, 9–21.

    Article  Google Scholar 

  3. Ma, D. D. D.; Lee, C. S.; Au, F. C. K.; Tong, S. Y.; Lee, S. T. Small-diameter silicon nanowire surfaces. Scienc. 2003, 299, 1874–1877.

    Article  CAS  Google Scholar 

  4. Li, D. Y.; Wu, Y. Y.; Kim, P.; Shi, L.; Yang, P. D. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 2003, 83, 2934–2936.

    Article  CAS  Google Scholar 

  5. Goldberger, J.; Hochbaum, A. I.; Fan, R.; Yang, P. D. Silicon vertically integrated nanowire field effect transistors. Nano Lett. 2006, 6, 973–977.

    Article  CAS  Google Scholar 

  6. Wang, Q.; Li, J. J.; Ma, Y. J.; Bai, X. D.; Wang, Z. L.; Xu, P.; Shi, C. Y.; Quan, B. G.; Yue, S. L.; Gu, C. Z. Field emission properties of carbon coated Si nanocone arrays on porous silicon. Nanotechnology 2005, 16, 2919–2922.

    Article  CAS  Google Scholar 

  7. Shao, M. W.; Yao, H.; Zhang, M. L.; Wong, N. B.; Shan, Y. Y.; Lee, S. T. Fabrication and application of long strands of silicon nanowires as sensors for bovine albumin detection. Appl. Phys. Lett. 2005, 87, 183106.

    Article  Google Scholar 

  8. Zhu, J.; Hsu, C. M.; Yu, Z.; Fan, S.; Cui, Y. Nanodome solar cells with efficient light management and self-cleaning. Nano Lett. 2010, 10, 1979–1984.

    Article  CAS  Google Scholar 

  9. Fan, Z.; Ruebusch, D. J.; Rathore, A. A.; Kapadia, R.; Ergen, O.; Leu, P. W.; Javey, A. Challenges and prospects of nanopillar-based solar cells. Nano Res. 2009, 2, 829–843.

    Article  Google Scholar 

  10. Morales, A. M.; Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279, 208–211.

    Article  CAS  Google Scholar 

  11. Yu, D. P.; Bai, Z. G.; Ding, Y.; Hang, Q. L.; Zhang, H. Z.; Wang, J. J.; Zou, Y. H.; Qian, W.; Xiong, G. C.; Zhou, H. T.; Feng, S. Q. Nanoscale silicon wires synthesized using simple physical evaporation. Appl. Phys. Lett. 1998, 72, 3458–3460.

    Article  CAS  Google Scholar 

  12. Kim, B. S.; Koo, T. W.; Lee, J. H.; Kim, D. S.; Jung, Y. C.; Hwang, S. W.; Choi, B. L.; Lee, E. K.; Kim, J. M.; Whang, D. Catalyst-free growth of single-crystal silicon and germanium nanowires. Nano Lett. 2009, 9, 864–869.

    Article  CAS  Google Scholar 

  13. Liu, X.; Wang, D. Kinetically-induced hexagonality in chemically grown silicon nanowires. Nano Res. 2009, 2, 575–582.

    Article  CAS  Google Scholar 

  14. Whang, D.; Jin, S.; Wu, Y.; Lieber, C. M. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 2003, 3, 1255–1259.

    Article  CAS  Google Scholar 

  15. Doshi, P.; Jellison, G. E.; Rohatgi, A. Characterization and optimization of absorbing plasma-enhanced chemical vapor deposited antireflection coatings for silicon photovoltaics. Appl. Opt. 1997, 36, 7826–7837.

    Article  CAS  Google Scholar 

  16. Striemer, C. C.; Fauchet, P. M. Dynamic etching of silicon for broadband antireflection applications. Appl. Phys. Lett. 2002, 81, 2980–2982.

    Article  CAS  Google Scholar 

  17. Lee, Y. J.; Ruby, D. S.; Peters, D. W.; McKenzie, B. B.; Hsu, J. W. P. ZnO nanostructures as efficient antireflection layers in solar cells. Nano Lett. 2008, 8, 1501–1505.

    Article  CAS  Google Scholar 

  18. Gombert, A.; Glaubitt, W.; Rose, K.; Dreibholz, J.; Blasi, B.; Heinzel, A.; Sporn, D.; Doll, W.; Wittwer, V. Antireflective transparent covers for solar devices. Sol. Energy. 2000, 68, 357–360.

    Article  Google Scholar 

  19. Li, Y.; Zhang, J.; Yang, B. Antireflective surface based on bio-mimetic nanopillared arrays. Nano Today 2010, 5, 117–127.

    Article  Google Scholar 

  20. Wilson, S. J.; Hutley, M. C. The optical properties of moth eye antireflection surfaces. Opt. Acta 1982, 29, 993–1009.

    Article  Google Scholar 

  21. Heine, C.; Morf, R. H. Submicrometer gratings for solar energy applications. Appl. Opt. 1995, 34, 2476–2482.

    Article  CAS  Google Scholar 

  22. Kanamori, Y.; Roy, E.; Chen, Y. Antireflection subwavelength gratings fabricated by spin-coating replication. Microelectron. Eng. 2005, 78–79, 287–293.

    Article  Google Scholar 

  23. Aydin, C.; Zaslavsky, A.; Sonek, G. J.; Goldstein, J. Reduction of reflection losses in ZnGeP2 using motheye antireflection surface relief structures. Appl. Phys. Lett. 2002, 80, 2242–2244.

    Article  CAS  Google Scholar 

  24. Zhang, G. M.; Zhang, J.; Xie, G. Y.; Liu, Z. F.; Shao, H. B. Cicada wings: A stamp from nature for nanoimprint lithography. Small 2006, 2, 1440–1443.

    Article  CAS  Google Scholar 

  25. Min, W. L.; Jiang, B.; Jiang, P. Bioinspired self-cleaning antireflection coatings. Adv. Mater. 2008, 20, 3914–3918.

    Article  CAS  Google Scholar 

  26. Wang, Y; Lu, N.; Xu, H.; Shi, G.; Xu, M.; Lin, X.; Li, H.; Wang, W.; Qi, D.; Lu, Y.; Chi, L. Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings. Nano Res. 2010, 3, 520–527.

    Article  CAS  Google Scholar 

  27. Huang, Y. F.; Chattopadhyay, S.; Jen, Y. J.; Peng, C. Y.; Liu, T. A.; Hsu, Y. K.; Pan, C. L.; Lo, H. C.; Hsu, C. H.; Chang, Y. H.; Lee, C. S.; Chen, K. H.; Chen, L. C. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nat. Nanotechnol. 2007, 2, 770–774.

    Article  CAS  Google Scholar 

  28. Ting, C. J.; Huang, M. C.; Tsai, H. Y.; Chou, C. P.; Fu, C. C. Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology. Nanotechnology 2008, 19, 205301.

    Article  Google Scholar 

  29. Peng, K. Q.; Yan, Y. J.; Gao, S. P.; Zhu, J. Synthesis of large area nanowire via self-assembling nanoelectrochemistry. Adv. Mater. 2002, 14, 1164–1167.

    Article  CAS  Google Scholar 

  30. Peng, K. Q.; Huang, Z. P.; Zhu, J. Fabrication of large-area silicon nanowire p-n junction diode arrays. Adv. Mater. 2004, 16, 73–76.

    Article  CAS  Google Scholar 

  31. Peng, K. Q.; Wu, Y.; Fang, H.; Zhong, X. Y.; Xu, Y.; Zhu, J. Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays. Angew. Chem. Int. Edn. 2005, 44, 2737–2742.

    Article  CAS  Google Scholar 

  32. Peng, K. Q.; Hu, J. J.; Yan, Y. J.; Wu, Y.; Fang, H.; Xu, Y.; Lee, S. T.; Zhu, J. Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv. Funct. Mater. 2006, 16, 387–394.

    Article  CAS  Google Scholar 

  33. Huang, Z.; Fang, H.; Zhu, J. Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Adv. Mater. 2007, 19, 744–748.

    Article  CAS  Google Scholar 

  34. Garnett, E.; Yang, P. Light trapping in silicon nanowire solar cells. Nano Lett. 2010, 10, 1082–1087.

    Article  CAS  Google Scholar 

  35. Shiu, S. C.; Chao, J. J.; Hung, S. C.; Yeh, C. L.; Lin, C. F. Morphology dependence of silicon nanowire/poly(3,4- ethylenedioxythiophene):poly(styrenesulfonate) heterojunction solar cells. Chem. Mater. 2010, 22, 3108–3113.

    Article  CAS  Google Scholar 

  36. Clapham, P. B.; Hutley, M. C. Reduction of lens reflection by moth eye principle. Nature 1973, 244, 281–282.

    Article  Google Scholar 

  37. Tsakalakos, L. Nanostructures for photovoltaics. Mater. Sci. Eng. R. 2008, 62, 175–189.

    Article  Google Scholar 

  38. Muskens, O. L.; Rivas, J. G.; Algra, R. E.; Bakkers, E. P. A. M.; Lagendijk, A. Design of light scattering in nanowire materials for photovoltaic applications. Nano Lett. 2008, 8, 2638–2642.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zingway Pei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiyagu, S., Devi, B.P. & Pei, Z. Fabrication of large area high density, ultra-low reflection silicon nanowire arrays for efficient solar cell applications. Nano Res. 4, 1136–1143 (2011). https://doi.org/10.1007/s12274-011-0162-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0162-5

Keywords

Navigation