Skip to main content
Log in

Microbial diversity of a sulfide black smoker in main endeavour hydrothermal vent field, Juan de Fuca Ridge

  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Submarine hydrothermal vents are among the least-understood habitats on Earth but have been the intense focus of research in the past 30 years. An active hydrothermal sulfide chimney collected from the Dudley site in the Main Endeavour vent Field (MEF) of Juan de Fuca Ridge was investigated using mineralogical and molecular approaches. Mineral analysis indicated that the chimney was composed mainly of Fe-, Zn-and Cu-rich sulfides. According to phylogenetic analysis, within the Crenarchaeota, clones of the order Desulfurococcales predominated, comprising nearly 50% of archaeal clones. Euryarchaeota were composed mainly of clones belonging to Thermococcales and deep-sea hydrothermal vent Euryarchaeota (DHVE), each of which accounted for about 20% of all clones. Thermophilic or hyperthermophilic physiologies were common to the predominant archaeal groups. More than half of bacterial clones belonged to ɛ-Proteobacteria, which confirmed their prevalence in hydrothermal vent environments. Clones of Proteobacteria (γ-, δ-, β-), Cytophaga-Flavobacterium-Bacteroides (CFB) and Deinococcus-Thermus occurred as well. It was remarkable that methanogens and methanotrophs were not detected in our 16S rRNA gene library. Our results indicated that sulfur-related metabolism, which included sulfur-reducing activity carried out by thermophilic archaea and sulfur-oxidizing by mesophilic bacteria, was common and crucial to the vent ecosystem in Dudley hydrothermal site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amann, R.I., W. Ludwig, and K.H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169.

    PubMed  CAS  Google Scholar 

  • Bae, S.S., Y.J. Kim, and S.H. Yang. 2006. Thermococcus onnurineus sp. nov., a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent area at the PACMANUS field. J. Microbiol. Biotechnol. 16, 1826–1831.

    CAS  Google Scholar 

  • Bano, N., S. Ruffin, B. Ransom, and J.T. Hollibaugh. 2004. Phylogenetic composition of Arctic Ocean archaeal assemblages and comparison with Antarctic assemblages. Appl. Environ. Microbiol. 70, 781–789.

    Article  PubMed  CAS  Google Scholar 

  • Blöchl, E., R. Rachel, S. Burggraf, D. Hafenbradl, H.W. Jannasch, and K.O. Stetter. 1997. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C. Extremophiles 1, 14–21.

    Article  PubMed  Google Scholar 

  • Boetius, A., C. Schubert, and D. Rickert. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626.

    Article  PubMed  CAS  Google Scholar 

  • Bond, P.L. and J.F. Banfield. 2001. Design and performance of rRNA targeted oligonucleotide probes for in situ detection and phylogenetic identification of microorganisms inhabiting acid mine drainage environments. Microbiol. Ecol. 41, 149–161.

    CAS  Google Scholar 

  • Brazelton, W., M. Schrenk, D. Kelley, and J. Baross. 2006. Methaneand sulfur-metabolizing microbial communities dominate the lost city hydrothermal field ecosystem. Appl. Environ. Microbiol. 72, 6257–6270.

    Article  PubMed  CAS  Google Scholar 

  • Butterfield, D.A., R.E. McDuff, M.J. Mottl, M.D. Lilley, J.E. Lupton, and G.J. Massoth. 1994. Gradients in the composition of hydrothermal fluids from the endeavour segment vent field: Phase seperation and brine loss. J. Geophys. Res. 99, 9561–9583.

    Article  Google Scholar 

  • Corlis, J.B., J. Dymon, L.I. Gordon, J.M. Edmond, and R.P. Von Herzen. 1979. Submarine thermal springs on the Galapagos Rift. Science 203, 1073–1083.

    Article  Google Scholar 

  • Corre, E., A.L. Reysenbach, and D. Prieur. 2001. Epsilon-Proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. FEMS Microbiol. Lett. 205, 329–335.

    PubMed  CAS  Google Scholar 

  • Cowen, J.P. 2004. The microbial biosphere of sediment buried oceanic basement. Res. Microbiol. 155, 497–506.

    Article  PubMed  Google Scholar 

  • Delaney, J.R., V. Robigou, R.E. McDuff, and M.K. Tivey. 1992. Geology of a vigorous hydrothermal system on the Endeavour Segment, Juan de Fuca Ridge. J. Geophys. Res. 97, 19663–19682.

    Article  Google Scholar 

  • Delong, E.F. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89, 5685–5689.

    Article  PubMed  CAS  Google Scholar 

  • Dilly, O., J. Bloem, A. Vos, and J.C. Munch. 2004. Bacterial diversity in agricultural soils during litter decomposition. Appl. Environ. Microbiol. 70, 468–474.

    Article  PubMed  CAS  Google Scholar 

  • Donval, J.P., J.L. Charlou, and E. Douville. 1997. High H2 and CH4 content in hydrothermal fluids from Rainbow site newly sampled at 36°14′N on the AMAR segment, Mid-Atlantic Ridge (diving FLORES cruise, 1997). Comparison with other MAR sites. EOS Trans. 78, 832.

    Google Scholar 

  • Ehrhardt, C.J., R.M. Haymon, M.G. Lamontagne, and P.A. Holden. 2007. Evidence for hydrothermal Archaea within the basaltic flanks of the East Pacific Rise. Environ. Microbiol. 9, 900–912.

    Article  PubMed  CAS  Google Scholar 

  • Finster, K., W. Liesack, and B. Tindall. 1997. Sulfurospirillum arcachonense sp. nov., a new microaerophilic sulfur reducing bacterium. Int. J. Syst. Bacteriol. 47, 1212–1217.

    Article  PubMed  CAS  Google Scholar 

  • Goffredi, S.K., A. Warén, V.J. Orphan, C.L. van Dover, and R.C. Vrijenhoek. 2004. Novel forms of structural integration between microbes and a hydrothermal vent gastropod from the Indian Ocean. Appl. Environ. Microbiol. 70, 3082–3090.

    Article  PubMed  CAS  Google Scholar 

  • Hao, X. and K. Ma. 2003. Minimal sulfur requirement for growth and sulfur-dependent metabolism of the hyperthermophilic archaeon Staphylothermus marinus. Archaea 1, 191–197.

    Article  PubMed  CAS  Google Scholar 

  • Harmsen, H.J.M., D. Prieur, and C. Jeanthon. 1997. Distribution of microorganisms in deep-sea hydrothermal vent chimneys investigated by whole-cell hybridization and enrichment culture of thermophilic subpopulations. Appl. Environ. Microbiol. 63, 2876–2883.

    PubMed  CAS  Google Scholar 

  • He, J.Z., J.P. Shen, L.M. Zhang, and Y.G. Zhu. 2007. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ. Microbiol. 9, 2364–2374.

    Article  PubMed  CAS  Google Scholar 

  • Hoek, J., A. Banta, F. Hubler, and A.L. Reysenbach. 2003. Microbial diversity of a sulphide spire located in the Edmond deep-sea hydrothermal vent filed on the central indian ridge. Geobiology 1, 119–127.

    Article  CAS  Google Scholar 

  • Huber, H. and K.O. Stetter. 1998. Hyperthermophiles and their possible potential in biotechnology. J. Bacteriol. 64, 39–52.

    CAS  Google Scholar 

  • Huber, H. and K.O. Stetter. 2001. Order I. Thermoproteales, p. 170–179. In D.R. Boone and R.W. Castenholz (eds.), Bergey’s Manual of Systematic Bacteriology: The Archaea and the Deeply Branching and Phototrophic Bacteria. Springer, New York, N.Y., USA.

    Google Scholar 

  • Huber, J.A., P.H. Johnson, D.A. Butterfield, and J.A. Baross. 2006. Microbial life in ridge flank crustal fluids. Environ. Microbiol. 8, 88–99.

    Article  PubMed  CAS  Google Scholar 

  • Inagaki, F., K. Takai, H. Kobayashi, K.H. Nealson, and K. Horikoshi. 2003. Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing epsilon-proteobacterium isolated from hydrothermal sediments in the mid-Okinawa Trough. Int. J. Syst. Evol. Microbiol. 53, 1801–1805.

    Article  PubMed  CAS  Google Scholar 

  • Inagaki, F., K. Takai, K.H. Nealson, and K. Horikoshi. 2004. Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the epsilon-Proteobacteria isolated from the Okinawa Trough hydrothermal sediments. Int. J. Syst. Evol. Microbiol. 54, 1477–1482.

    Article  PubMed  CAS  Google Scholar 

  • Kashefi, K. and D.R. Lovely. 2003. Extending the upper temperature limit for life. Science 301, 934.

    Article  PubMed  CAS  Google Scholar 

  • Kelley, D.S., J.A. Baross, and J.R. Delaney. 2002. Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annu. Rev. Earth Planet Sci. 30, 385–491.

    Article  CAS  Google Scholar 

  • Kelley, D.S., J.A. Karson, and D.K. Blackman. 2001. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature 412, 145–149.

    Article  PubMed  CAS  Google Scholar 

  • Kormas, K.A., M.K. Tivey, K.V. Damm, and A. Teske. 2006. Bacterial and archaeal phylotypes associated with distinct mineralogical layers of a white smoker spire from a deep-sea hydrothermal vent site (9°N, East Pacific Rise). Environ. Microbiol. 8, 909–920.

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara, T., M. Minaba, N. Ogi, and M. Kamekura. 2007. Thermococcus celericrescens sp. nov., a fastgrowing and cell-fusing hyperthermophilic archaeon from a deep-sea hydrothermal vent. Int. J. Syst. Evol. Microbiol. 57, 437–443.

    Article  PubMed  CAS  Google Scholar 

  • Lane, D.J. 1991. 16S/23S rRNA sequencing, p. 115–175. In E. Stackebrandt and M. Goodfellow (eds.), Nucleic acid techniques in bacterial systematics. Wiley, Chichester, UK.

    Google Scholar 

  • Lathe, R. 1985. Synthetic oligonucleotide probes deduced from amino acid sequence data. Theoretical and practical considerations. J. Mol. Biol. 183, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Lepage, E., E. Marguet, C. Geslin, O. Matte-Tailliez, W. Zillig, P. Forterre, and P. Tailliez. 2004. Molecular diversity of new Thermococcales isolates from a single area of hydrothermal deep-sea vents as revealed by randomly amplified polymorphic DNA fingerprinting and 16S rRNA gene sequence analysis. Appl. Environ. Microbiol. 70, 1277–1286.

    Article  PubMed  CAS  Google Scholar 

  • Lilley, M.D., D.A. Butterfield, J.E. Lupton, and E.J. Olson. 2003. Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422, 878–881.

    Article  PubMed  CAS  Google Scholar 

  • Lilley, M.D., D.A. Butterfield, E.J. Olson, J.E. Lupton, S.A. Macko, and R.E. Mcduff. 1993. Anomalous CH4 and NH4 + concentrations at an unsedimented mid-ocean-ridge hydrothermal system. Nature 364, 45–47.

    Article  CAS  Google Scholar 

  • Longnecker, K. and A.L. Reysenbach. 2001. Expansion of the geographic distribution of a novel lineage of epsilon-Proteobacteria to a hydrothermal vent site on the Southern East Pacific Rise. FEMS Microbiol. Ecol. 35, 287–293.

    PubMed  CAS  Google Scholar 

  • López-García, P., S. Duperron, P. Philippot, J. Foriel, J. Susini, and D. Moreira. 2003. Bacterial diversity in hydrothermal sediment and epsilon-proteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ. Microbiol. 5, 961–976.

    Article  PubMed  CAS  Google Scholar 

  • López-García, P., F. Gaill, and D. Moreira. 2002. Wide bacterial diversity associated with tubes of the vent worm Riftia pachyptila. Environ. Microbiol. 4, 204–215.

    Article  PubMed  Google Scholar 

  • Maidak, B.L., J.R. Cole, T.G. Lilburn, C.T. Parker, P.R. Saxman, R.J. Farris, G.M. Garrity, G.L. Olsen, T.M. Schmidt, and J.M. Tiedje. 2001. The RDP-II (Ribosomal Database Project). Nucleic Acids Res. 29, 173–174.

    Article  PubMed  CAS  Google Scholar 

  • McCollom, T.M. and E.L. Shock. 1997. Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochim. Cosmochim. Acta 61, 4375–4391.

    Article  PubMed  CAS  Google Scholar 

  • Miroshnichenko, M.L., S.L. Haridon, and C. Jeanthon. 2003. Oceanithermus profundus gen. nov., sp. nov., a thermophilic, microaerophilic, facultatively chemolithoheterotrophic bacterium from a deep-sea hydrothermal vent. Int. J. Syst. Evol. Microbiol. 53, 747–752.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, S., K. Takai, F. Inagaki, K. Horikoshi, and Y. Sako. 2005. Nitratiruptor tergarcus gen. nov., sp. nov. and Nitratifractor salsuginis gen. nov., sp. nov., nitrate-reducing chemolithoautotrophs of the e-Proteobacteria isolated from a deep-sea hydrothermal system in the Mid-Okinawa Trough. Int. J. Syst. Evol. Microbiol. 55, 925–933.

    Article  PubMed  CAS  Google Scholar 

  • Nercessian, O., M. Prokofeva, A. Lebedinski, S. L’Haridon, C. Cary, D. Prieur, and C. Jeanthon. 2004. Design of 16S rRNA-targeted oligonucleotide probes for detecting cultured and uncultured archaeal lineages in hightemperature environments. Environ. Microbiol. 6, 170–182.

    Article  PubMed  CAS  Google Scholar 

  • Nercessian, O., A.L. Reysenbach, D. Prieur, and C. Jeanthon. 2003. Archaeal diversity associated with in situ samplers deployed on hydrothermal vents on the East Pacific Rise. Environ. Microbiol. 5, 492–502.

    Article  PubMed  Google Scholar 

  • Page, A., S.K. Juniper, M. Olagnon, K. Alain, G. Desrosiers, J. Querellou, and M.A. Cambon-Bonavita. 2004. Microbial diversity associated with a Paralvinella sulfincola tube and the adjacent substratum on an active deep-sea vent chimney. Geobiology 2, 225–238.

    Article  Google Scholar 

  • Page, A., M.K. Tivey, D.S. Stakes, and A.L. Reysenbach. 2008. Temporal and spatial archaeal colonization of hydrothermal vent deposits. Environ. Microbiol. 10, 874–884.

    Article  PubMed  CAS  Google Scholar 

  • Perner, M., J. Kuever, and R. Seifert. 2007. The influence of ultramafic rocks on microbial communities at the Logatchev hydrothermal field, located 15N on the Mid-Atlantic Ridge. FEMS Microbiol. Ecol. 61, 97–109.

    Article  PubMed  CAS  Google Scholar 

  • Poltz, M.F. and C.M. Cavanaugh. 1995. Dominance of one bacterial phylotype at a Mid-Atlantic Ridge hydrothermal vent site. Proc. Natl. Acad. Sci. USA 92, 7232–7236.

    Article  Google Scholar 

  • Prieur, D. 1997. Microbiology of deep-sea hydrothermal vents. Trends Biotechnol. 15, 242–244.

    Article  CAS  Google Scholar 

  • Reysenbach, A.L., Y.T. Liu, A.B. Banta, and T.J. Beveridge. 2006. Isolation of a ubiquitous obligate thermoacidophilic archaeon from deep-sea hydrothermal vents. Nature 442, 444–447.

    Article  PubMed  CAS  Google Scholar 

  • Reysenbach, A.L., K. Longnecker, and J. Kirshtein. 2000. Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a mid-atlantic ridge hydrothermal vent. Appl. Environ. Microbiol. 66, 3798–3806.

    Article  PubMed  CAS  Google Scholar 

  • Schrenk, M.O., D.S. Kelley, J.R. Delaney, and J.A. Baross. 2003. Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney. Appl. Environ. Microbiol. 69, 3580–3592.

    Article  PubMed  CAS  Google Scholar 

  • Takai, K. and K. Horikoshi. 1999. Genetic diversity of Archaea in deep-sea hydrothermal vent environments. Genetics 152, 1285–1297.

    PubMed  CAS  Google Scholar 

  • Takai, K., F. Inagaki, S. Nakagawa, H. Hirayama, T. Nunoura, and Y. Sako. 2003. Isolation and phylogenetic diversity of members of previously uncultivated ɛ-Proteobacteria in deep-sea hydrothermal vents. FEMS Microbiol. Lett. 218, 167–174.

    PubMed  CAS  Google Scholar 

  • Takai, K., T. Komatus, F. Inagaki, and K. Horikoshi. 2001. Distribution of archaea in a black smoker chimney structure. Appl. Environ. Microbiol. 67, 3618–3629.

    Article  PubMed  CAS  Google Scholar 

  • Teske, A., K.U. Hinrichs, and V. Edgcomb. 2002. Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl. Environ. Microbiol. 68, 1994–2007.

    Article  PubMed  CAS  Google Scholar 

  • Tivey, M.K. and J.R. Delaney. 1986. Growth of large sulfide structures on the endeavour segment of the Juan de Fuca Ridge. Earth Planet. Sci. Lett. 77, 303–317.

    Article  CAS  Google Scholar 

  • Tivey, M.K., D.S. Stakes, T.L. Cook, M.D. Hannington, and S. Petersen. 1999. A model for growth of steep-sided vent structures on the endeavour segment of the Juan de Fuca Ridge: results of a petrologic and geochemical study. J. Geophys. Res. 104, 22859–22883.

    Article  CAS  Google Scholar 

  • Urakawa, H., N. Dubilier, Y. Fujiwara, D.E. Cunningham, S. Kojima, and D.A. Stahl. 2005. Hydrothermal vent gastropods from the same family (Provannidae) harbour ɛ- and γ-proteobacterial endosymbionts. Environ. Microbiol. 7, 750–754.

    Article  PubMed  CAS  Google Scholar 

  • Van Dover, C.L., S.E. Humphris, and D. Fornari. 2001. Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science 294, 818–823.

    Article  PubMed  Google Scholar 

  • Von Dam, K.L. and M.D. Lilley. 2004. Diffuse flow hydrothermal fluids from 9°50′N East Pacific Rise: orgin, evolution and biogeochemical controls, p. 245–268. In W.S.D. Wilcock, E.F. Delong, D.S. Kelley, J.A. Baross, and S.C. Cary (eds.), The subseafloor Biosphere at Mid-Ocean Ridges. Geophys Union Monogr Ser, Washington, D.C., USA.

    Google Scholar 

  • Zerkle, A.L., C.H. House, and S.L. Brantley. 2005. Biogeochemical signatures through time as inferred from whole microbial genomes. Am. J. Sci. 305, 467–502.

    Article  CAS  Google Scholar 

  • Zhou, J., M. Bruns, and J. Tiedje. 1996. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62, 316–322.

    PubMed  CAS  Google Scholar 

  • Zillig, W. and A.L. Reysenbach. 2001. Thermococcaceae fam. nov., p. 341–348. In D.R. Boone and R.W. Castenholz (eds.), Bergey’s Manual of Systematic Bacteriology. Springer, New York, N.Y., USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangtao Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, H., Li, J., Peng, X. et al. Microbial diversity of a sulfide black smoker in main endeavour hydrothermal vent field, Juan de Fuca Ridge. J Microbiol. 47, 235–247 (2009). https://doi.org/10.1007/s12275-008-0311-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-008-0311-z

Keywords

Navigation