Skip to main content
Log in

Multiple matrix metalloproteinases in type II collagen induced arthritis

  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

To study the relative contribution of various matrix degrading enzymes in the pathogenesis of arthritis, changes in the levels of various matrix metalloprtoteinases (MMPs) during the progression of collagen induced arthritis was studied in experimental animals. Arthritis was induced in male wistar rats by injecting an emulsion containing collagen type II and Freund’s complete adjuvant. The duration of the experiment was 35 days. Synovial effusate was collected at regular intervals after induction. At the end of the experiment serum and cartilage were collected and analysed. Synovial fluid of osteoarthritic patients was also analyzed. Levels of MMP-2, MMP-3, MMP-9 and MT1-MMP were found to be high in synovial effusate and cartilage of experimental animals. In synovial effusate of arthritic animals the expression of MMP-3 was found to be high during the early stages while increase in MMP-2 and MMP-9 occurred at later stages. Synovial fluid of osteoarthritic patients also showed elevated levels of MMP-2, MMP-3 and MMP-9. Our results indicated that sequential action of MMPs such as MMP-3, MMP-2 and MMP-9 can cause degradation of articular cartilage extracellular matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lotz M, Hashimoto S, Kuhn K. Mechanisms of chondrocyte apoptosis. Osteoarthritis Cartilage 1999;7:389–391.

    Article  PubMed  CAS  Google Scholar 

  2. Buttle DJ, Bramwell H, Hollander AP. Proteolytic mechanisms of cartilage breakdown: a target for arthritis therapy? Clin Pathol Mol Pathol 1995;48:167–177.

    Article  Google Scholar 

  3. Murphy G, Reynolds JJ. Current views of collagen degradation. Progress towards understanding the resorption of connective tissues. Bio Essays 1985;2:55–60.

    Google Scholar 

  4. Kozaci LD, Buttle DJ, Hollander AP. Degradation of type II collagen, but not proteoglycan, correlates with matrix metalloproteinase activity in cartilage explant cultures. Arthritis Rheum 1997;40:164–174.

    Article  PubMed  CAS  Google Scholar 

  5. Makowski GS, Ramsby ML. Zymographic analysis of latent and activated forms of matrix metalloproteinase-2 and -9 in synovial fluid: correlation to polymorphonuclear leukocyte infiltration and in response to infection. Clin Chim Acta 2003;329:77–81.

    Article  PubMed  CAS  Google Scholar 

  6. Matrisian LM. The matrix-degrading metalloproteinases. Bio Essays 1992;14:455–463.

    CAS  Google Scholar 

  7. Murphy G, Hembry RM, Hughes CE, Fosang AJ, Hardingham TE. Role and regulation of metalloproteinases in connective tissue turnover. Biochem Soc Trans 1990;18:812–815.

    PubMed  CAS  Google Scholar 

  8. Murphy G, Reynolds JJ, Hembry RM. Metalloproteinases and cancer invasion and metastasis. Int J Cancer 1989;44:757–760.

    Article  PubMed  CAS  Google Scholar 

  9. Nagase H, Woessner JF Jr. Matrix metalloproteinases. J Biol Chem 1999;274:21491–21494.

    Article  PubMed  CAS  Google Scholar 

  10. Cawston T. Matrix metalloproteinases and TIMPs: properties and implications for the rheumatic diseases. Mol Med Today 1998;4:130–137.

    Article  PubMed  CAS  Google Scholar 

  11. Brew K, Dinakarpandian D, Nagase H. Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 2000;1477:267–283.

    PubMed  CAS  Google Scholar 

  12. Clark IM, Rowan AD, Cawston TE. Matrix metalloproteinase inhibitors in the treatment of arthritis, Curr Opin Antiinflammatory Immunomodulatory Drugs 2000;2:16–25.

    CAS  Google Scholar 

  13. Firestein GS, Paine MM, Littman BH. Gene expression (collagenase, tissue inhibitor of metalloproteinases, complement and HLA-DR) in rheumatoid arthritis and osteoarthritis synovium, Quantitative analysis and effect of intraarticular corticosteroids. Arhtritis Rheum 1991;34:1094–1105.

    Article  CAS  Google Scholar 

  14. Gravallese EM, Darling JM, Ladd AL, Katz JM, Glimcher LH. In situ hybridization studies of stromelysin and collagenase messenger RNA expression on rheumatoid synovium. Arhtritis Rheum 1991;34:1076–1084.

    Article  CAS  Google Scholar 

  15. McCachren SS. Expression of metalloproteinases and metalloproteinase inhibitor in human arthritic synovium. Arhtritis Rheum 1991;34:1085–1093.

    Article  CAS  Google Scholar 

  16. Freije JM, Diez-Itza I, Balbin M, Sanchez LM, Blasco R, Tolivia J, et al. Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas. J Biol Chem 1999;269:16766–16773.

    Google Scholar 

  17. Makowski GS, Ramsby ML. Autoactivation profiles of calcium-dependent matrix metalloproteinase-2 and -9 in inflammatory synovial fluid: effect of pyrophosphate and bisphosphonates. Clin Chim Acta 2005;358(1–2):182–191.

    Article  PubMed  CAS  Google Scholar 

  18. Balbin M, Fueyo A, Knauper V, Lopez JM, Alvarez J, Sanchez LM, et al. Identification and enzymatic characterization of two diverging murine counterparts of human interstitial collagenase (MMP-1) expressed at sites of embryo implantation. J Biol Chem 2001;276:10253–10262.

    Article  PubMed  CAS  Google Scholar 

  19. Konttinen YT, Ainola M, Valleala H, Ma J, Ida H, Mandelin J, et al. Analysis of 16 different matrix metalloproteinases (MMP-1 to MMP-20) in synovial membrane: different profiles in trauma and rheumatoid arthritis. Ann Rheum Dis 1999;58:691–697.

    Article  PubMed  CAS  Google Scholar 

  20. Mattsson L, Larsson P, Erlandsson-Harris H, Klareskog L, Harris RA. Parasite-mediated down -regulation of collagen induced arthritis (CIA) in DA rats. Clin Exp Immunol 2000;122:477–483.

    Article  PubMed  CAS  Google Scholar 

  21. Kawai Y, Anno K. Mucopolysaccharise-degrading enzymes from the liver of the squid, Ommastrephes solani pacificus. I. Hyaluronidase. Biochim Biophys Acta 1971;242:428–436.

    PubMed  CAS  Google Scholar 

  22. Johnson WG, Moak G, Brady RO. In: Methods in Enzymology. Colowick SP and Kaplan NO (ed), Academic Press NY 1972;28:857–861.

    Google Scholar 

  23. Ambili M, Jayasree K, Sudhakaran PR. 60k gelatinase involved in mammary gland involution is regulated by â estradiol. Biochim Biophys Acta 1998;1403:219–231.

    Article  PubMed  CAS  Google Scholar 

  24. Engvall E, Perlman P. Enzyme-linked immunosorbent assay (ELISA), Quantitative assay of immunoglobulin. Immunochem 1971;8:871–874.

    Article  CAS  Google Scholar 

  25. Mastroianni C, Vollov F, Paloetti AD, Massetti F, Sorice S, Dellia I. Detection of mycobacterial antigens by dotblot assay in cerebrospinal fluids of patients with tubercular meningities. J Infect 1991;22:106–107.

    Article  PubMed  CAS  Google Scholar 

  26. Rao SK, Mathrubutham M, Karteron A, Sorensen K, Cohen JR. A versatile Microassay for Elastase using succinylated Elastin. Anal Biochem 1997;250:222–227.

    Article  PubMed  CAS  Google Scholar 

  27. Smolian H, Aurer A, Sittinger M, Zacher J, Bernimoulin JP, Burmester GR, Kolkenbrock H. Secretion of gelatinases and activation of gelatinase A (MMP-2) by human rheumatoid synovial fibroblasts. Biol Chem 2001;382:1491–1499.

    Article  PubMed  CAS  Google Scholar 

  28. Buttle DJ, Handley MZ, Ilic M., Saklatvala J, Murata M, Barrett AJ, et al. Inhibition of cartilage proteoglycan release by a specific inactivator of Cathepsin B and an inhibitor of matrix metalloproteinases. Evidence for two converging pathways of chondrocyte-mediated proteoglycan degradation. Arthritis Rheum 1993;36:1709–1717.

    Article  PubMed  CAS  Google Scholar 

  29. Knauper VC, Will H, Lopez-Otin C, Smith B, Atkinson SJ, Stanton H., et al. Cellular mechanisms for human procollagenase -3 (MMP-13) activation. Evidence that MT1- MMP (MMP-14) and gelatinase A (MMP-2) are able to generate active enzyme. J Biol Chem 1996;271:17124–17131.

    Article  PubMed  CAS  Google Scholar 

  30. Gomis-Ruth FX, Maskos K, Betz M., Bergner A, Huber R., Suzuki K, et al. Mechanism of inhibition of the human metalloproteinase stromelysin-1 by TIMP-1. Nature 1997;389:77–81.

    Article  PubMed  CAS  Google Scholar 

  31. McKenna LA, Liu H, Sansom PA, Dean MF. An N-terminal peptide from link protein stimulates proteoglycan synthesis in human articular cartilage in vitro. Arthritis Rheum 1998;41:157–161.

    Article  PubMed  CAS  Google Scholar 

  32. Peake NJ, Foster HE, Khawaja K, Cawston LE, Rowan AD. Assessment of the clinical significance of gelatinase activity in patients with juvenile idiopathic arthritis using quantitative protein substrate zymography. Ann Rheum Dis 2006;65(4):501–517.

    Article  PubMed  CAS  Google Scholar 

  33. Salinardi BJ, Roush JK, Schermerhorn T, Mitchell KE. Matrix metalloproteinase and tissue inhibitor of metalloproteinase in serum and synovial fluid of osteoarthritic dogs. Vet Comp Orthop Traumatol 2006;19:49–55.

    PubMed  CAS  Google Scholar 

  34. Kanyama M, Kuboki T, Kojima S, Fujisawa T, Hattori T, Takigawa M, Yamashita A. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids of patients with temporomandibular joint osteoarthritis. J Orofac Pain 2000;14:20–30.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Achan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandya, S., Achan, M.A. & Sudhakaran, P.R. Multiple matrix metalloproteinases in type II collagen induced arthritis. Indian J Clin Biochem 24, 42–48 (2009). https://doi.org/10.1007/s12291-009-0007-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-009-0007-0

Key Words

Navigation