Skip to main content

Advertisement

Log in

Human dermal matrix scaffold augmentation for large and massive rotator cuff repairs: preliminary clinical and MRI results at 1-year follow-up

  • Published:
MUSCULOSKELETAL SURGERY Aims and scope Submit manuscript

Abstract

The high incidence of recurrent tendon tears after repair of massive cuff lesions is prompting the research of materials aimed at mechanically or biologically reinforcing the tendon. Among the materials studied upto now, the extracellular matrix (ECM) scaffolds of human origin have proved to be the safest and most efficient, but the current laws about grafts and transplants preclude their use in Europe. In order to overcome this condition in 2006, we started a project regarding the production of an ECM scaffold of human origin which could be implanted in Europe too. In 2009, the clinical study began with the implantation of dermal matrix scaffolds in 7 middle-aged patients affected with large/massive cuff lesions and tendon degeneration. Out of 5 cases, followed for at least 1 year in which the scaffold was employed as an augmentation device, there were 3 patients with complete healing, 1 partial re-tear, and 1 total recurrence. The absence of adverse inflammatory or septic complications allows to continue this line of research with a prospective controlled study in order to define the real advantages and correct indications offered by scaffold application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Burkhart SS, Athanasiou KA, Wirth MA (1996) Margin convergence: a method of reducing strain in massive rotator cuff tears. Arthroscopy 12(3):335–338

    Article  PubMed  CAS  Google Scholar 

  2. Baleani M, Schrader S, Veronesi CA, Rotini R, Giardino R, Toni A (2003) Surgical repair of the rotator cuff: a biomechanical evaluation of different tendon grasping and bone suture fixation techniques. Clin Biomech (Bristol, Avon) 18(8):721–729

    Google Scholar 

  3. Ma CB, MacGillivray JD, Clabeaux J, Lee S, Otis JC (2004) Biomechanical evaluation of arthroscopic rotator cuff stitches. J Bone Joint Surg Am 86-A(6):1211–1216

    Google Scholar 

  4. Bungaro P, Rotini R, Traina F, Baleani M, Antonioli D, Fini M, Castagna A (2005) Comparative and experimental study on different tendinous grasping techniques in rotator cuff repair: a new reinforced stitch. Chir Organi Mov 90(2):113–119

    PubMed  CAS  Google Scholar 

  5. Baleani M, Ohman C, Guandalini L, Rotini R, Giavaresi G, Traina F, Viceconti M (2006) Comparative study of different tendon grasping techniques for arthroscopic repair of the rotator cuff. Clin Biomech (Bristol, Avon) 21(8):799–803

    Google Scholar 

  6. Sugaya H, Maeda K, Matsuki K, Moriishi J (2005) Functional and structural outcome after arthroscopic full-thickness rotator cuff repair: single-row versus dual-row fixation. Arthroscopy 21(11):1307–1316

    Article  PubMed  Google Scholar 

  7. Park MC, Elattrache NS, Ahmad CS, Tibone JE (2006) “Transosseous-equivalent” rotator cuff repair technique. Arthroscopy 22(12):1360e1–e5

    Google Scholar 

  8. Audenaert E, Van Nuffel J, Schepens A, Verhelst M, Verdonk R (2006) Reconstruction of massive rotator cuff lesions with a synthetic interposition graft: a prospective study of 41 patients. Knee Surg Sports Traumatol Arthrosc 14(4):360–364

    Article  PubMed  CAS  Google Scholar 

  9. Hirooka A, Yoneda M, Wakaitani S, Isaka Y, Hayashida K, Fukushima S, Okamura K (2002) Augmentation with a Gore-Tex patch for repair of large rotator cuff tears that cannot be sutured. J Orthop Sci 7(4):451–456

    Article  PubMed  Google Scholar 

  10. Heikel HV (1968) Rupture of the rotator cuff of the shoulder. experiences of surgical treatment. Acta Orthop Scand 39(4):477–492

    Google Scholar 

  11. Neviaser JS (1971) Ruptures of the rotator cuff of the shoulder. new concepts in the diagnosis and operative treatment of chronic ruptures. Arch Surg 102(5):483–485

    Google Scholar 

  12. Rhee YG, Cho NS, Lim CT, Yi JW, Vishvanathan T (2008) Bridging the gap in immobile massive rotator cuff tears: augmentation using the tenotomized biceps. Am J Sports Med 36(8):1511–1518

    Article  PubMed  Google Scholar 

  13. Cho NS, Yi JW, Rhee YG (2009) Arthroscopic biceps augmentation for avoiding undue tension in repair of massive rotator cuff tears. Arthroscopy 25(2):183–191

    Article  PubMed  Google Scholar 

  14. Neviaser JS, Neviaser RJ, Neviaser TJ (1978) The repair of chronic massive ruptures of the rotator cuff of the shoulder by use of a freeze-dried rotator cuff. J Bone Joint Surg Am 60(5):681–684

    PubMed  CAS  Google Scholar 

  15. Nasca RJ (1988) The use of freeze-dried allografts in the management of global rotator cuff tears. Clin Orthop Relat Res (228):218–226

  16. Moore DR, Cain EL, Schwartz ML, Clancy WG Jr (2006) Allograft reconstruction for massive, irreparable rotator cuff tears. Am J Sports Med 34(3):392–396

    Article  PubMed  Google Scholar 

  17. Sclamberg SG, Tibone JE, Itamura JM, Kasraeian S (2004) Six-month magnetic resonance imaging follow-up of large and massive rotator cuff repairs reinforced with porcine small intestinal submucosa. J Shoulder Elbow Surg 13(5):538–541

    Article  PubMed  Google Scholar 

  18. Iannotti JP, Codsi MJ, Kwon YW, Derwin K, Ciccone J, Brems JJ (2006) Porcine small intestine submucosa augmentation of surgical repair of chronic two-tendon rotator cuff tears. a randomized, controlled trial. J Bone Joint Surg Am 88(6):1238–1244

    Google Scholar 

  19. Malcarney HL, Bonar F, Murrell GA (2005) Early inflammatory reaction fter rotator cuff repair with a porcine small intestine submucosal implant: a report of 4 cases. Am J Sports Med 33:907–911

    Article  PubMed  Google Scholar 

  20. Zheng MH, Chen J, Kirilak Y, Willers C, Xu J, Wood D (2005) Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: possible implications in human implantation. J Biomed Mater Res B Appl Biomater 73(1):61–67

    PubMed  CAS  Google Scholar 

  21. Gilbert TW, Freund JM, Badylak SF (2009) Quantification of DNA in biologic scaffold materials. J Surg Res 152(1):135–139

    Article  PubMed  CAS  Google Scholar 

  22. Fini M, Torricelli P, Giavaresi G, Rotini R, Castagna A, Giardino R (2007) In vitro study comparing two collageneous membranes in view of their clinical application for rotator cuff tendon regeneration. J Orthop Res 25(1):98–107

    Article  PubMed  CAS  Google Scholar 

  23. Barber FA, Herbert MA, Boothby MH (2008) Ultimate tensile failure loads of a human dermal allograft rotator cuff augmentation. Arthroscopy 24(1):20–24

    Article  PubMed  Google Scholar 

  24. Adams JE, Zobitz ME, Reach JS Jr, An KN, Steinmann SP (2006) Rotator cuff repair using an acellular dermal matrix graft: an in vivo study in a canine model. Arthroscopy 22(7):700–709

    Article  PubMed  Google Scholar 

  25. Ide J, Kikukawa K, Hirose J, Iyama K, Sakamoto H, Mizuta H (2009) Reconstruction of large rotator-cuff tears with acellular dermal matrix grafts in rats. J Shoulder Elbow Surg 18(2):288–295

    Google Scholar 

  26. Burkhead W, Schiffern S, Krishnan S (2007) Use of graft jacket as an augmentation for massive rotator cuff tears. Semin Arthro 18:11–18

    Article  Google Scholar 

  27. Dopirak R, Bond J, Snyder S (2007) Arthroscopic total rotator cuff replacement with an acellular human dermal allograft matrix. Int J shoulder Surg 1:7–15

    Article  Google Scholar 

  28. Bond JL, Dopirak RM, Higgins J, Burns J, Snyder SJ (2008) Arthroscopic replacement of massive, irreparable rotator cuff tears using a GraftJacket allograft: technique and preliminary results. Arthroscopy 24(4):403–409

    Article  PubMed  Google Scholar 

  29. Wong I, Burns J, Snyder S (2010) Arthroscopic GraftJacket repair of rotator cuff tears. J Shoulder Elbow Surg 19(2 Suppl):104–109

    Article  PubMed  Google Scholar 

  30. Snyder SJ, Arnoczky SP, Bond JL, Dopirak R (2009) Histologic evaluation of a biopsy specimen obtained 3 months after rotator cuff augmentation with GraftJacket matrix. Arthroscopy 25(3):329–333

    Article  PubMed  Google Scholar 

  31. Rotini R, Fini M, Giavaresi G, Marinelli A, Guerra E, Antonioli D, Castagna A, Giardino R (2008) New perspectives in rotator cuff tendon regeneration: review of tissue engineered therapies. Chir Organi Mov 91(2):87–92

    Article  PubMed  Google Scholar 

  32. Funakoshi T, Majima T, Iwasaki N, Suenaga N, Sawaguchi N, Shimode K, Minami A, Harada K, Nishimura S (2005) Application of tissue engineering techniques for rotator cuff regeneration using a chitosan-based hyaluronan hybrid fiber scaffold. Am J Sports Med 33(8):1193–1201

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest related to the publication of this manuscript. The authors FM and BE are among the inventors of the patent on the decellularization method that was applied on the human dermis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Rotini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rotini, R., Marinelli, A., Guerra, E. et al. Human dermal matrix scaffold augmentation for large and massive rotator cuff repairs: preliminary clinical and MRI results at 1-year follow-up. Musculoskelet Surg 95 (Suppl 1), 13–23 (2011). https://doi.org/10.1007/s12306-011-0141-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12306-011-0141-8

Keywords

Navigation