Skip to main content

Advertisement

Log in

Pericytes on the Tumor Vasculature: Jekyll or Hyde?

  • Review Paper
  • Published:
Cancer Microenvironment

Abstract

The induction of tumor vasculature, known as the ‘angiogenic switch’, is a rate-limiting step in tumor progression. Normal blood vessels are composed of two distinct cell types: endothelial cells which form the channel through which blood flows, and mural cells, the pericytes and smooth muscle cells which serve to support and stabilize the endothelium. Most functional studies have focused on the responses of endothelial cells to pro-angiogenic stimuli; however, there is mounting evidence that the supporting mural cells, particularly pericytes, may play key regulatory roles in both promoting vessel growth as well as terminating vessel growth to generate a mature, quiescent vasculature. Tumor vessels are characterized by numerous structural and functional abnormalities, including altered association between endothelial cells and pericytes. These dysfunctional, unstable vessels contribute to hypoxia, interstitial fluid pressure, and enhanced susceptibility to metastatic invasion. Increasing evidence points to the pericyte as a critical regulator of endothelial activation and subsequent vessel development, stability, and function. Here we discuss both the stimulatory and inhibitory effects of pericytes on the vasculature and the possible utilization of vessel normalization as a therapeutic strategy to combat cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Diaz-Flores L, Gutierrez R, Madrid JF, Varela H, Valladares F, Acosta E, Martin-Vasallo P, Diaz-Flores L Jr (2009) Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol 24:909–969

    PubMed  CAS  Google Scholar 

  2. De Smet F, Segura I, De Bock K, Hohensinner PJ, Carmeliet P (2009) Mechanisms of vessel branching: Filopodia on endothelial tip cells lead the way. Arterioscler Thromb Vasc Biol 29:639–649

    Article  PubMed  CAS  Google Scholar 

  3. Eilken HM, Adams RH (2010) Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol 22:617–625

    Article  PubMed  CAS  Google Scholar 

  4. Folkman J (1975) Tumor angiogenesis: a possible control point in tumor growth. Ann Intern Med 82:96–100

    PubMed  CAS  Google Scholar 

  5. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  PubMed  CAS  Google Scholar 

  6. Watson JC, Redmann JG, Meyers MO, Alperin-Lea RC, Gebhardt BM, Delcarpio JB, Woltering EA (1997) Breast cancer increases initiation of angiogenesis without accelerating neovessel growth rate. Surgery 122:508–513, discussion 513–504

    Article  PubMed  CAS  Google Scholar 

  7. Coulon C, Georgiadou M, Roncal C, De Bock K, Langenberg T, Carmeliet P (2010) From vessel sprouting to normalization: role of the prolyl hydroxylase domain protein/hypoxia-inducible factor oxygen-sensing machinery. Arterioscler Thromb Vasc Biol 30:2331–2336

    Article  PubMed  CAS  Google Scholar 

  8. Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845

    Article  PubMed  CAS  Google Scholar 

  9. Oh H, Takagi H, Suzuma K, Otani A, Matsumura M, Honda Y (1999) Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells. J Biol Chem 274:15732–15739

    Article  PubMed  CAS  Google Scholar 

  10. Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, Qian H, Xue XN, Pollard JW (2006) Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66:11238–11246

    Article  PubMed  CAS  Google Scholar 

  11. Berse B, Brown LF, Van de Water L, Dvorak HF, Senger DR (1992) Vascular permeability factor (vascular endothelial growth factor) gene is expressed differentially in normal tissues, macrophages, and tumors. Mol Biol Cell 3:211–220

    PubMed  CAS  Google Scholar 

  12. Hubbard NE, Lim D, Mukutmoni M, Cai A, Erickson KL (2005) Expression and regulation of murine macrophage angiopoietin-2. Cell Immunol 234:102–109

    Article  PubMed  CAS  Google Scholar 

  13. Baluk P, Hashizume H, McDonald DM (2005) Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15:102–111

    Article  PubMed  CAS  Google Scholar 

  14. Fukumura D, Jain RK (2007) Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res 74:72–84

    Article  PubMed  CAS  Google Scholar 

  15. Rak J, Filmus J, Finkenzeller G, Grugel S, Marme D, Kerbel RS (1995) Oncogenes as inducers of tumor angiogenesis. Cancer Metastasis Rev 14:263–277

    Article  PubMed  CAS  Google Scholar 

  16. Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–266

    Article  PubMed  CAS  Google Scholar 

  17. De Bock K, Cauwenberghs S, Carmeliet P (2011) Vessel abnormalization: another hallmark of cancer? Molecular mechanisms and therapeutic implications. Curr Opin Genet Dev 21:73–79

    Article  PubMed  CAS  Google Scholar 

  18. Dvorak HF (2010) Vascular permeability to plasma, plasma proteins, and cells: an update. Curr Opin Hematol 17:225–229

    PubMed  CAS  Google Scholar 

  19. Dvorak HF, Senger DR, Dvorak AM (1983) Fibrin as a component of the tumor stroma: origins and biological significance. Cancer Metastasis Rev 2:41–73

    Article  PubMed  CAS  Google Scholar 

  20. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659

    Article  PubMed  CAS  Google Scholar 

  21. Boucher Y, Baxter LT, Jain RK (1990) Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res 50:4478–4484

    PubMed  CAS  Google Scholar 

  22. Stohrer M, Boucher Y, Stangassinger M, Jain RK (2000) Oncotic pressure in solid tumors is elevated. Cancer Res 60:4251–4255

    PubMed  CAS  Google Scholar 

  23. Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK (2004) Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 64:3731–3736

    Article  PubMed  CAS  Google Scholar 

  24. Eberhard A, Kahlert S, Goede V, Hemmerlein B, Plate KH, Augustin HG (2000) Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res 60:1388–1393

    PubMed  CAS  Google Scholar 

  25. Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160:985–1000

    Article  PubMed  Google Scholar 

  26. Abramsson A, Berlin O, Papayan H, Paulin D, Shani M, Betsholtz C (2002) Analysis of mural cell recruitment to tumor vessels. Circulation 105:112–117

    Article  PubMed  CAS  Google Scholar 

  27. Ozawa MG, Yao VJ, Chanthery YH, Troncoso P, Uemura A, Varner AS, Kasman IM, Pasqualini R, Arap W, McDonald DM (2005) Angiogenesis with pericyte abnormalities in a transgenic model of prostate carcinoma. Cancer 104:2104–2115

    Article  PubMed  CAS  Google Scholar 

  28. Tille JC, Pepper MS (2002) Mesenchymal cells potentiate vascular endothelial growth factor-induced angiogenesis in vitro. Exp Cell Res 280:179–191

    Article  PubMed  CAS  Google Scholar 

  29. Korff T, Kimmina S, Martiny-Baron G, Augustin HG (2001) Blood vessel maturation in a 3-dimensional spheroidal coculture model: direct contact with smooth muscle cells regulates endothelial cell quiescence and abrogates vegf responsiveness. FASEB J 15:447–457

    Article  PubMed  CAS  Google Scholar 

  30. Witmer AN, van Blijswijk BC, van Noorden CJ, Vrensen GF, Schlingemann RO (2004) In vivo angiogenic phenotype of endothelial cells and pericytes induced by vascular endothelial growth factor-a. J Histochem Cytochem 52:39–52

    Article  PubMed  CAS  Google Scholar 

  31. Hughes S, Chan-Ling T (2004) Characterization of smooth muscle cell and pericyte differentiation in the rat retina in vivo. Invest Ophthalmol Vis Sci 45:2795–2806

    Article  PubMed  Google Scholar 

  32. Sasaki Y, Yamamura H, Kawakami Y, Yamada T, Hiratsuka M, Kameyama M, Ohigashi H, Ishikawa O, Imaoka S, Ishiguro S, Takahashi K (2002) Expression of smooth muscle calponin in tumor vessels of human hepatocellular carcinoma and its possible association with prognosis. Cancer 94:1777–1786

    Article  PubMed  Google Scholar 

  33. Kinouchi T, Mano M, Matsuoka I, Kodama S, Aoki T, Okamoto M, Yamamura H, Usami M, Takahashi K (2003) Immature tumor angiogenesis in high-grade and high-stage renal cell carcinoma. Urology 62:765–770

    Article  PubMed  Google Scholar 

  34. Koganehira Y, Takeoka M, Ehara T, Sasaki K, Murata H, Saida T, Taniguchi S (2003) Reduced expression of actin-binding proteins, h-caldesmon and calponin h1, in the vascular smooth muscle inside melanoma lesions: an adverse prognostic factor for malignant melanoma. Br J Dermatol 148:971–980

    Article  PubMed  CAS  Google Scholar 

  35. Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewski C, Maisonpierre PC, Yancopoulos GD (1996) Isolation of angiopoietin-1, a ligand for the tie2 receptor, by secretion-trap expression cloning. Cell 87:1161–1169

    Article  PubMed  CAS  Google Scholar 

  36. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD (1997) Angiopoietin-2, a natural antagonist for tie2 that disrupts in vivo angiogenesis. Science 277:55–60

    Article  PubMed  CAS  Google Scholar 

  37. Gill KA, Brindle NP (2005) Angiopoietin-2 stimulates migration of endothelial progenitors and their interaction with endothelium. Biochem Biophys Res Commun 336:392–396

    Article  PubMed  CAS  Google Scholar 

  38. Teichert-Kuliszewska K, Maisonpierre PC, Jones N, Campbell AIM, Master Z, Bendeck MP, Alitalo K, Dumont DJ, Yancopoulos GD, Steward DJ (2001) Biological action of angiopoietin-2 in a fibrin matrix model of angiogenesis is associated with activation of tie2. Cardiovasc Res 49:659–670

    Article  PubMed  CAS  Google Scholar 

  39. Dumont DJ, Gradwohl G, Fong GH, Puri MC, Gertsenstein M, Auerbach A, Breitman ML (1994) Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev 8:1897–1909

    Article  PubMed  CAS  Google Scholar 

  40. Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Qin Y (1995) Distinct roles of the receptor tyrosine kinases tie-1 and tie-2 in blood vessel formation. Nature 376:70–74

    Article  PubMed  CAS  Google Scholar 

  41. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD (1996) Requisite role of angiopoietin-1, a ligand for the tie2 receptor, during embryonic angiogenesis. Cell 87:1171–1180

    Article  PubMed  CAS  Google Scholar 

  42. Jeansson M, Gawlik A, Anderson G, Li C, Kerjaschki D, Henkelman M, Quaggin SE (2011) Angiopoietin-1 is essential in mouse vasculature during development and in response to injury. J Clin Invest 121:2278–2289

    Article  PubMed  CAS  Google Scholar 

  43. Feng Y, vom Hagen F, Pfister F, Djokic S, Hoffmann S, Back W, Wagner P, Lin J, Deutsch U, Hammes HP (2007) Impaired pericyte recruitment and abnormal retinal angiogenesis as a result of angiopoietin-2 overexpression. Thromb Haemost 97:99–108

    PubMed  CAS  Google Scholar 

  44. Mazzieri R, Pucci F, Moi D, Zonari E, Ranghetti A, Berti A, Politi LS, Gentner B, Brown JL, Naldini L, De Palma M (2011) Targeting the ang2/tie2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 19:512–526

    Article  PubMed  CAS  Google Scholar 

  45. Hashizume H, Falcon BL, Kuroda T, Baluk P, Coxon A, Yu D, Bready JV, Oliner JD, McDonald DM (2010) Complementary actions of inhibitors of angiopoietin-2 and vegf on tumor angiogenesis and growth. Cancer Res 70:2213–2223

    Article  PubMed  CAS  Google Scholar 

  46. Nasarre P, Thomas M, Kruse K, Helfrich I, Wolter V, Deppermann C, Schadendorf D, Thurston G, Fiedler U, Augustin HG (2009) Host-derived angiopoietin-2 affects early stages of tumor development and vessel maturation but is dispensable for later stages of tumor growth. Cancer Res 69:1324–1333

    Article  PubMed  CAS  Google Scholar 

  47. Folkman J, D'Amore PA (1996) Blood vessel formation: What is its molecular basis? Cell 87:1153–1155

    Article  PubMed  CAS  Google Scholar 

  48. Kobayashi H, DeBusk LM, Babichev YO, Dumont DJ, Lin PC (2006) Hepatocyte growth factor mediates angiopoietin-induced smooth muscle cell recruitment. Blood 108:1260–1266

    Article  PubMed  CAS  Google Scholar 

  49. Iivanainen E, Nelimarkka L, Elenius V, Heikkinen SM, Junttila TT, Sihombing L, Sundvall M, Maatta JA, Laine VJ, Yla-Herttuala S, Higashiyama S, Alitalo K, Elenius K (2003) Angiopoietin-regulated recruitment of vascular smooth muscle cells by endothelial-derived heparin binding egf-like growth factor. FASEB J 17:1609–1621

    Article  PubMed  CAS  Google Scholar 

  50. Stratman AN, Schwindt AE, Malotte KM, Davis GE (2010) Endothelial-derived pdgf-bb and hb-egf coordinately regulate pericyte recruitment during vasculogenic tube assembly and stabilization. Blood 116:4720–4730

    Article  PubMed  CAS  Google Scholar 

  51. Aplin AC, Fogel E, Nicosia RF (2010) Mcp-1 promotes mural cell recruitment during angiogenesis in the aortic ring model. Angiogenesis 13:219–226

    Article  PubMed  CAS  Google Scholar 

  52. De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M, Naldini L (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8:211–226

    Article  PubMed  CAS  Google Scholar 

  53. Tian S, Hayes AJ, Metheny-Barlow LJ, Li LY (2002) Stabilization of breast cancer xenograft tumour neovasculature by angiopoietin-1. Br J Cancer 86:645–651

    Article  PubMed  CAS  Google Scholar 

  54. Iurlaro M, Scatena M, Zhu WH, Fogel E, Wieting SL, Nicosia RF (2003) Rat aorta-derived mural precursor cells express the tie2 receptor and respond directly to stimulation by angiopoietins. J Cell Sci 116:3635–3643

    Article  PubMed  CAS  Google Scholar 

  55. Witzenbichler B, Maisonpierre PC, Jones P, Yancopoulos GD, Isner JM (1998) Chemotactic properties of angiopoietin-1 and −2, ligands for the endothelial-specific receptor tyrosine kinase tie2. J Biol Chem 273:18514–18521

    Article  PubMed  CAS  Google Scholar 

  56. Park YS, Kim NH, Jo I (2003) Hypoxia and vascular endothelial growth factor acutely up-regulate angiopoietin-1 and tie2 mrna in bovine retinal pericytes. Microvasc Res 65:125–131

    Article  PubMed  CAS  Google Scholar 

  57. Metheny-Barlow LJ, Tian S, Hayes AJ, Li LY (2004) Direct chemotactic action of angiopoietin-1 on mesenchymal cells in the presence of vegf. Microvasc Res 68:221–230

    Article  PubMed  CAS  Google Scholar 

  58. Fukuhara S, Sako K, Minami T, Noda K, Kim HZ, Kodama T, Shibuya M, Takakura N, Koh GY, Mochizuki N (2008) Differential function of tie2 at cell-cell contacts and cell-substratum contacts regulated by angiopoietin-1. Nat Cell Biol 10:513–526

    Article  PubMed  CAS  Google Scholar 

  59. Zhang J, Fukuhara S, Sako K, Takenouchi T, Kitani H, Kume T, Koh GY, Mochizuki N (2011) Angiopoietin-1/tie2 signal augments basal notch signal controlling vascular quiescence by inducing delta-like 4 expression through akt-mediated activation of beta-catenin. J Biol Chem 286:8055–8066

    Article  PubMed  CAS  Google Scholar 

  60. Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C (1999) Role of pdgf-b and pdgfr-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126:3047–3055

    PubMed  CAS  Google Scholar 

  61. Lindahl P, Johansson BR, Leveen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in pdgf-b-deficient mice. Science 277:242–245

    Article  PubMed  CAS  Google Scholar 

  62. Soriano P (1994) Abnormal kidney development and hematological disorders in pdgf beta-receptor mutant mice. Genes Dev 8:1888–1896

    Article  PubMed  CAS  Google Scholar 

  63. Winkler EA, Bell RD, Zlokovic BV (2010) Pericyte-specific expression of pdgf beta receptor in mouse models with normal and deficient pdgf beta receptor signaling. Mol Neurodegener 5:32

    Article  PubMed  CAS  Google Scholar 

  64. Kuhnert F, Tam BY, Sennino B, Gray JT, Yuan J, Jocson A, Nayak NR, Mulligan RC, McDonald DM, Kuo CJ (2008) Soluble receptor-mediated selective inhibition of vegfr and pdgfrbeta signaling during physiologic and tumor angiogenesis. Proc Natl Acad Sci U S A 105:10185–10190

    Article  PubMed  CAS  Google Scholar 

  65. Lindblom P, Gerhardt H, Liebner S, Abramsson A, Enge M, Hellstrom M, Backstrom G, Fredriksson S, Landegren U, Nystrom HC, Bergstrom G, Dejana E, Ostman A, Lindahl P, Betsholtz C (2003) Endothelial pdgf-b retention is required for proper investment of pericytes in the microvessel wall. Genes Dev 17:1835–1840

    Article  PubMed  CAS  Google Scholar 

  66. Abramsson A, Lindblom P, Betsholtz C (2003) Endothelial and nonendothelial sources of pdgf-b regulate pericyte recruitment and influence vascular pattern formation in tumors. J Clin Invest 112:1142–1151

    PubMed  CAS  Google Scholar 

  67. Greenberg JI, Shields DJ, Barillas SG, Acevedo LM, Murphy E, Huang J, Scheppke L, Stockmann C, Johnson RS, Angle N, Cheresh DA (2008) A role for vegf as a negative regulator of pericyte function and vessel maturation. Nature 456:809–813

    Article  PubMed  CAS  Google Scholar 

  68. Song N, Huang Y, Shi H, Yuan S, Ding Y, Song X, Fu Y, Luo Y (2009) Overexpression of platelet-derived growth factor-bb increases tumor pericyte content via stromal-derived factor-1alpha/cxcr4 axis. Cancer Res 69:6057–6064

    Article  PubMed  CAS  Google Scholar 

  69. Pellet-Many C, Frankel P, Evans IM, Herzog B, Junemann-Ramirez M, Zachary IC (2011) Neuropilin-1 mediates pdgf stimulation of vascular smooth muscle cell migration and signalling via p130cas. Biochem J 435:609–618

    Article  PubMed  CAS  Google Scholar 

  70. Foo SS, Turner CJ, Adams S, Compagni A, Aubyn D, Kogata N, Lindblom P, Shani M, Zicha D, Adams RH (2006) Ephrin-b2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell 124:161–173

    Article  PubMed  CAS  Google Scholar 

  71. Salvucci O, Maric D, Economopoulou M, Sakakibara S, Merlin S, Follenzi A, Tosato G (2009) Ephrinb reverse signaling contributes to endothelial and mural cell assembly into vascular structures. Blood 114:1707–1716

    Article  PubMed  CAS  Google Scholar 

  72. Erber R, Eichelsbacher U, Powajbo V, Korn T, Djonov V, Lin J, Hammes HP, Grobholz R, Ullrich A, Vajkoczy P (2006) Ephb4 controls blood vascular morphogenesis during postnatal angiogenesis. EMBO J 25:628–641

    Article  PubMed  CAS  Google Scholar 

  73. Semela D, Das A, Langer D, Kang N, Leof E, Shah V (2008) Platelet-derived growth factor signaling through ephrin-b2 regulates hepatic vascular structure and function. Gastroenterology 135:671–679

    Article  PubMed  CAS  Google Scholar 

  74. Okazaki T, Ni A, Baluk P, Ayeni OA, Kearley J, Coyle AJ, Humbles A, McDonald DM (2009) Capillary defects and exaggerated inflammatory response in the airways of epha2-deficient mice. Am J Pathol 174:2388–2399

    Article  PubMed  CAS  Google Scholar 

  75. Sanchez T, Hla T (2004) Structural and functional characteristics of s1p receptors. J Cell Biochem 92:913–922

    Article  PubMed  CAS  Google Scholar 

  76. Tamama K, Kon J, Sato K, Tomura H, Kuwabara A, Kimura T, Kanda T, Ohta H, Ui M, Kobayashi I, Okajima F (2001) Extracellular mechanism through the edg family of receptors might be responsible for sphingosine-1-phosphate-induced regulation of DNA synthesis and migration of rat aortic smooth-muscle cells. Biochem J 353:139–146

    Article  PubMed  CAS  Google Scholar 

  77. Kluk MJ, Hla T (2001) Role of the sphingosine 1-phosphate receptor edg-1 in vascular smooth muscle cell proliferation and migration. Circ Res 89:496–502

    Article  PubMed  CAS  Google Scholar 

  78. Osada M, Yatomi Y, Ohmori T, Ikeda H, Ozaki Y (2002) Enhancement of sphingosine 1-phosphate-induced migration of vascular endothelial cells and smooth muscle cells by an edg-5 antagonist. Biochem Biophys Res Commun 299:483–487

    Article  PubMed  CAS  Google Scholar 

  79. Boguslawski G, Grogg JR, Welch Z, Ciechanowicz S, Sliva D, Kovala AT, McGlynn P, Brindley DN, Rhoades RA, English D (2002) Migration of vascular smooth muscle cells induced by sphingosine 1-phosphate and related lipids: potential role in the angiogenic response. Exp Cell Res 274:264–274

    Article  PubMed  CAS  Google Scholar 

  80. Tanimoto T, Lungu AO, Berk BC (2004) Sphingosine 1-phosphate transactivates the platelet-derived growth factor beta receptor and epidermal growth factor receptor in vascular smooth muscle cells. Circ Res 94:1050–1058

    Article  PubMed  CAS  Google Scholar 

  81. Bornfeldt KE, Graves LM, Raines EW, Igarashi Y, Wayman G, Yamamura S, Yatomi Y, Sidhu JS, Krebs EG, Hakomori S et al (1995) Sphingosine-1-phosphate inhibits pdgf-induced chemotaxis of human arterial smooth muscle cells: spatial and temporal modulation of pdgf chemotactic signal transduction. J Cell Biol 130:193–206

    Article  PubMed  CAS  Google Scholar 

  82. Lockman K, Hinson JS, Medlin MD, Morris D, Taylor JM, Mack CP (2004) Sphingosine-1-phosphate stimulates smooth muscle cell differentiation and proliferation by activating separate serum response factor co-factors. J Biol Chem

  83. Hobson JP, Rosenfeldt HM, Barak LS, Olivera A, Poulton S, Caron MG, Milstien S, Spiegel S (2001) Role of the sphingosine-1-phosphate receptor edg-1 in pdgf-induced cell motility. Science 291:1800–1803

    Article  PubMed  CAS  Google Scholar 

  84. Mizugishi K, Yamashita T, Olivera A, Miller GF, Spiegel S, Proia RL (2005) Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol 25:11113–11121

    Article  PubMed  CAS  Google Scholar 

  85. Liu Y, Wada R, Yamashita T, Mi Y, Deng CX, Hobson JP, Rosenfeldt HM, Nava VE, Chae SS, Lee MJ, Liu CH, Hla T, Spiegel S, Proia RL (2000) Edg-1, the g protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J Clin Invest 106:951–961

    Article  PubMed  CAS  Google Scholar 

  86. Paik JH, Skoura A, Chae SS, Cowan AE, Han DK, Proia RL, Hla T (2004) Sphingosine 1-phosphate receptor regulation of n-cadherin mediates vascular stabilization. Genes Dev

  87. McVerry BJ, Garcia JG (2005) In vitro and in vivo modulation of vascular barrier integrity by sphingosine 1-phosphate: mechanistic insights. Cell Signal 17:131–139

    Article  PubMed  CAS  Google Scholar 

  88. Allende ML, Yamashita T, Proia RL (2003) G-protein-coupled receptor s1p1 acts within endothelial cells to regulate vascular maturation. Blood 102:3665–3667

    Article  PubMed  CAS  Google Scholar 

  89. Du W, Takuwa N, Yoshioka K, Okamoto Y, Gonda K, Sugihara K, Fukamizu A, Asano M, Takuwa Y (2010) S1p(2), the g protein-coupled receptor for sphingosine-1-phosphate, negatively regulates tumor angiogenesis and tumor growth in vivo in mice. Cancer Res 70:772–781

    Article  PubMed  CAS  Google Scholar 

  90. Ryu Y, Takuwa N, Sugimoto N, Sakurada S, Usui S, Okamoto H, Matsui O, Takuwa Y (2002) Sphingosine-1-phosphate, a platelet-derived lysophospholipid mediator, negatively regulates cellular rac activity and cell migration in vascular smooth muscle cells. Circ Res 90:325–332

    Article  PubMed  CAS  Google Scholar 

  91. Sugimoto N, Takuwa N, Okamoto H, Sakurada S, Takuwa Y (2003) Inhibitory and stimulatory regulation of rac and cell motility by the g12/13-rho and gi pathways integrated downstream of a single g protein-coupled sphingosine-1-phosphate receptor isoform. Mol Cell Biol 23:1534–1545

    Article  PubMed  CAS  Google Scholar 

  92. Allsopp G, Gamble HJ (1979) Light and electron microscopic observations on the development of the blood vascular system of the human brain. J Anat 128:461–477

    PubMed  CAS  Google Scholar 

  93. Caruso RA, Fedele F, Finocchiaro G, Pizzi G, Nunnari M, Gitto G, Fabiano V, Parisi A, Venuti A (2009) Ultrastructural descriptions of pericyte/endothelium peg-socket interdigitations in the microvasculature of human gastric carcinomas. Anticancer Res 29:449–453

    PubMed  CAS  Google Scholar 

  94. Diaz-Flores L Jr, Gutierrez R, Madrid JF, Saez FJ, Valladares F, Villar J, Diaz-Flores L (2011) Peg-and-socket junctions between smooth muscle cells and endothelial cells in femoral veins are stimulated to angiogenesis by prostaglandin e and glycerols. Histol Histopathol 26:623–630

    PubMed  Google Scholar 

  95. Wakui S, Yokoo K, Muto T, Suzuki Y, Takahashi H, Furusato M, Hano H, Endou H, Kanai Y (2006) Localization of ang-1, -2, tie-2, and vegf expression at endothelial-pericyte interdigitation in rat angiogenesis. Lab Invest 86:1172–1184

    PubMed  CAS  Google Scholar 

  96. Wakui S, Furusato M, Ohshige H, Ushigome S (1993) Endothelial-pericyte interdigitations in rat subcutaneous disc implanted angiogenesis. Microvasc Res 46:19–27

    Article  PubMed  CAS  Google Scholar 

  97. McGuire PG, Rangasamy S, Maestas J, Das A (2011) Pericyte-derived sphinogosine 1-phosphate induces the expression of adhesion proteins and modulates the retinal endothelial cell barrier. Arterioscler Thromb Vasc Biol 31:e107–e115

    Article  PubMed  CAS  Google Scholar 

  98. Gerhardt H, Wolburg H, Redies C (2000) N-cadherin mediates pericytic-endothelial interaction during brain angiogenesis in the chicken. Dev Dyn 218:472–479

    Article  PubMed  CAS  Google Scholar 

  99. Sweet E, Abraham EH, D'Amore PA (1988) Functional evidence of gap junctions between capillary endothelial cells and pericytes in vitro. Invest Ophthalmol Vis Sci 29:109a

    Google Scholar 

  100. Hayashi K, Nakao S, Nakaoke R, Nakagawa S, Kitagawa N, Niwa M (2004) Effects of hypoxia on endothelial/pericytic co-culture model of the blood–brain barrier. Regul Pept 123:77–83

    Article  PubMed  CAS  Google Scholar 

  101. Hu J, Cotgreave IA (1997) Differential regulation of gap junctions by proinflammatory mediators in vitro. J Clin Invest 99:2312–2316

    Article  PubMed  CAS  Google Scholar 

  102. Larson DM, Carson MP, Haudenschild CC (1987) Junctional transfer of small molecules in cultured bovine brain microvascular endothelial cells and pericytes. Microvasc Res 34:184–199

    Article  PubMed  CAS  Google Scholar 

  103. Little T, Xia J, Duling BR (1995) Dye tracers define differential endothelial and smooth muscle coupling patterns within the arteriolar wall. Circ Res 76:498–504

    Article  PubMed  CAS  Google Scholar 

  104. Spitznas M, Reale E (1975) Fracture faces of fenestrations and junctions of endothelial cells in human choroidal vessels. Invest Ophthalmol 14:98–107

    PubMed  CAS  Google Scholar 

  105. de Wit C, Wolfle SE, Hopfl B (2006) Connexin-dependent communication within the vascular wall: contribution to the control of arteriolar diameter. Adv Cardiol 42:268–283

    Article  PubMed  Google Scholar 

  106. Figueroa XF, Duling BR (2009) Gap junctions in the control of vascular function. Antioxid Redox Signal 11:251–266

    Article  PubMed  CAS  Google Scholar 

  107. Hirschi KK, Burt JM, Hirschi KD, Dai C (2003) Gap junction communication mediates transforming growth factor-beta activation and endothelial-induced mural cell differentiation. Circ Res 93:429–437

    Article  PubMed  CAS  Google Scholar 

  108. Pries AR, Reglin B, Secomb TW (2005) Remodeling of blood vessels: responses of diameter and wall thickness to hemodynamic and metabolic stimuli. Hypertension 46:725–731

    Article  PubMed  CAS  Google Scholar 

  109. Dzau VJ, Gibbons GH (1993) Vascular remodeling: mechanisms and implications. J Cardiovasc Pharmacol 21(Suppl 1):S1–S5

    PubMed  CAS  Google Scholar 

  110. Pries AR, Hopfner M, le Noble F, Dewhirst MW, Secomb TW (2010) The shunt problem: control of functional shunting in normal and tumour vasculature. Nat Rev Cancer 10:587–593

    Article  PubMed  CAS  Google Scholar 

  111. Gould VE, Mosquera JM, Leykauf K, Gattuso P, Durst M, Alonso A (2005) The phosphorylated form of connexin43 is up-regulated in breast hyperplasias and carcinomas and in their neoformed capillaries. Hum Pathol 36:536–545

    Article  PubMed  CAS  Google Scholar 

  112. Suarez S, Ballmer-Hofer K (2001) Vegf transiently disrupts gap junctional communication in endothelial cells. J Cell Sci 114:1229–1235

    PubMed  CAS  Google Scholar 

  113. van Hinsbergh VW, Koolwijk P (2008) Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc Res 78:203–212

    Article  PubMed  CAS  Google Scholar 

  114. Hansen-Smith FM, Hudlicka O, Egginton S (1996) In vivo angiogenesis in adult rat skeletal muscle: early changes in capillary network architecture and ultrastructure. Cell Tissue Res 286:123–136

    Article  PubMed  CAS  Google Scholar 

  115. Gonul E, Duz B, Kahraman S, Kayali H, Kubar A, Timurkaynak E (2002) Early pericyte response to brain hypoxia in cats: an ultrastructural study. Microvasc Res 64:116–119

    Article  PubMed  Google Scholar 

  116. Dore-Duffy P, Owen C, Balabanov R, Murphy S, Beaumont T, Rafols JA (2000) Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res 60:55–69

    Article  PubMed  CAS  Google Scholar 

  117. Virgintino D, Girolamo F, Errede M, Capobianco C, Robertson D, Stallcup WB, Perris R, Roncali L (2007) An intimate interplay between precocious, migrating pericytes and endothelial cells governs human fetal brain angiogenesis. Angiogenesis 10:35–45

    Article  PubMed  Google Scholar 

  118. Behrens P, Rothe M, Wellmann A, Krischler J, Wernert N (2001) The ets-1 transcription factor is up-regulated together with mmp 1 and mmp 9 in the stroma of pre-invasive breast cancer. J Pathol 194:43–50

    Article  PubMed  CAS  Google Scholar 

  119. Chantrain CF, Shimada H, Jodele S, Groshen S, Ye W, Shalinsky DR, Werb Z, Coussens LM, DeClerck YA (2004) Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment. Cancer Res 64:1675–1686

    Article  PubMed  CAS  Google Scholar 

  120. Forsyth PA, Wong H, Laing TD, Rewcastle NB, Morris DG, Muzik H, Leco KJ, Johnston RN, Brasher PM, Sutherland G, Edwards DR (1999) Gelatinase-a (mmp-2), gelatinase-b (mmp-9) and membrane type matrix metalloproteinase-1 (mt1-mmp) are involved in different aspects of the pathophysiology of malignant gliomas. Br J Cancer 79:1828–1835

    Article  PubMed  CAS  Google Scholar 

  121. Nielsen BS, Sehested M, Kjeldsen L, Borregaard N, Rygaard J, Dano K (1997) Expression of matrix metalloprotease-9 in vascular pericytes in human breast cancer. Lab Invest 77:345–355

    PubMed  CAS  Google Scholar 

  122. Yao JS, Chen Y, Zhai W, Xu K, Young WL, Yang GY (2004) Minocycline exerts multiple inhibitory effects on vascular endothelial growth factor-induced smooth muscle cell migration: the role of erk1/2, pi3k, and matrix metalloproteinases. Circ Res 95:364–371

    Article  PubMed  CAS  Google Scholar 

  123. Wang H, Keiser JA (1998) Vascular endothelial growth factor upregulates the expression of matrix metalloproteinases in vascular smooth muscle cells: role of flt-1. Circ Res 83:832–840

    Article  PubMed  CAS  Google Scholar 

  124. Wen J, Han M, Zheng B, Yang S (2002) Comparison of gene expression patterns and migration capability at quiescent and proliferating vascular smooth muscle cells stimulated by cytokines. Life Sci 70:799–807

    Article  PubMed  CAS  Google Scholar 

  125. Fabunmi RP, Baker AH, Murray EJ, Booth RF, Newby AC (1996) Divergent regulation by growth factors and cytokines of 95 kda and 72 kda gelatinases and tissue inhibitors or metalloproteinases-1, -2, and −3 in rabbit aortic smooth muscle cells. Biochem J 315(Pt 1):335–342

    PubMed  CAS  Google Scholar 

  126. Chang SH, Kanasaki K, Gocheva V, Blum G, Harper J, Moses MA, Shih SC, Nagy JA, Joyce J, Bogyo M, Kalluri R, Dvorak HF (2009) Vegf-a induces angiogenesis by perturbing the cathepsin-cysteine protease inhibitor balance in venules, causing basement membrane degradation and mother vessel formation. Cancer Res 69:4537–4544

    Article  PubMed  CAS  Google Scholar 

  127. Nagy JA, Feng D, Vasile E, Wong WH, Shih SC, Dvorak AM, Dvorak HF (2006) Permeability properties of tumor surrogate blood vessels induced by vegf-a. Lab Invest 86:767–780

    PubMed  CAS  Google Scholar 

  128. Banerjee S, Sengupta K, Dhar K, Mehta S, D'Amore PA, Dhar G, Banerjee SK (2006) Breast cancer cells secreted platelet-derived growth factor-induced motility of vascular smooth muscle cells is mediated through neuropilin-1. Mol Carcinog 45:871–880

    Article  PubMed  CAS  Google Scholar 

  129. Nehls V, Denzer K, Drenckhahn D (1992) Pericyte involvement in capillary sprouting during angiogenesis in situ. Cell Tissue Res 270:469–474

    Article  PubMed  CAS  Google Scholar 

  130. Schlingemann RO, Rietveld FJ, Kwaspen F, van de Kerkhof PC, de Waal RM, Ruiter DJ (1991) Differential expression of markers for endothelial cells, pericytes, and basal lamina in the microvasculature of tumors and granulation tissue. Am J Pathol 138:1335–1347

    PubMed  CAS  Google Scholar 

  131. Baluk P, Morikawa S, Haskell A, Mancuso M, McDonald DM (2003) Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol 163:1801–1815

    Article  PubMed  Google Scholar 

  132. Zhang B, Dietrich UM, Geng JG, Bicknell R, Esko JD, Wang L (2009) Repulsive axon guidance molecule slit3 is a novel angiogenic factor. Blood 114:4300–4309

    Article  PubMed  CAS  Google Scholar 

  133. Jones CA, Nishiya N, London NR, Zhu W, Sorensen LK, Chan AC, Lim CJ, Chen H, Zhang Q, Schultz PG, Hayallah AM, Thomas KR, Famulok M, Zhang K, Ginsberg MH, Li DY (2009) Slit2-robo4 signalling promotes vascular stability by blocking arf6 activity. Nat Cell Biol 11:1325–1331

    Article  PubMed  CAS  Google Scholar 

  134. Amselgruber WM, Schafer M, Sinowatz F (1999) Angiogenesis in the bovine corpus luteum: an immunocytochemical and ultrastructural study. Anat Histol Embryol 28:157–166

    Article  PubMed  CAS  Google Scholar 

  135. Redmer DA, Doraiswamy V, Bortnem BJ, Fisher K, Jablonka-Shariff A, Grazul-Bilska AT, Reynolds LP (2001) Evidence for a role of capillary pericytes in vascular growth of the developing ovine corpus luteum. Biol Reprod 65:879–889

    Article  PubMed  CAS  Google Scholar 

  136. Reynolds LP, Grazul-Bilska AT, Redmer DA (2000) Angiogenesis in the corpus luteum. Endocrine 12:1–9

    Article  PubMed  CAS  Google Scholar 

  137. Robinson RS, Woad KJ, Hammond AJ, Laird M, Hunter MG, Mann GE (2009) Angiogenesis and vascular function in the ovary. Reproduction 138:869–881

    Article  PubMed  CAS  Google Scholar 

  138. Ozerdem U, Alitalo K, Salven P, Li A (2005) Contribution of bone marrow-derived pericyte precursor cells to corneal vasculogenesis. Invest Ophthalmol Vis Sci 46:3502–3506

    Article  PubMed  Google Scholar 

  139. Ozerdem U, Stallcup WB (2003) Early contribution of pericytes to angiogenic sprouting and tube formation. Angiogenesis 6:241–249

    Article  PubMed  CAS  Google Scholar 

  140. Ponce AM, Price RJ (2003) Angiogenic stimulus determines the positioning of pericytes within capillary sprouts in vivo. Microvasc Res 65:45–48

    Article  PubMed  CAS  Google Scholar 

  141. Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E (1999) Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 103:159–165

    Article  PubMed  CAS  Google Scholar 

  142. Wesseling P, Schlingemann RO, Rietveld FJ, Link M, Burger PC, Ruiter DJ (1995) Early and extensive contribution of pericytes/vascular smooth muscle cells to microvascular proliferation in glioblastoma multiforme: an immuno-light and immuno-electron microscopic study. J Neuropathol Exp Neurol 54:304–310

    Article  PubMed  CAS  Google Scholar 

  143. Jung YD, Liu W, Reinmuth N, Ahmad SA, Fan F, Gallick GE, Ellis LM (2001) Vascular endothelial growth factor is upregulated by interleukin-1 beta in human vascular smooth muscle cells via the p38 mitogen-activated protein kinase pathway. Angiogenesis 4:155–162

    Article  PubMed  CAS  Google Scholar 

  144. Reinmuth N, Liu W, Jung YD, Ahmad SA, Shaheen RM, Fan F, Bucana CD, McMahon G, Gallick GE, Ellis LM (2001) Induction of vegf in perivascular cells defines a potential paracrine mechanism for endothelial cell survival. FASEB J 15:1239–1241

    PubMed  CAS  Google Scholar 

  145. Darland DC, Massingham LJ, Smith SR, Piek E, Saint-Geniez M, D'Amore PA (2003) Pericyte production of cell-associated vegf is differentiation-dependent and is associated with endothelial survival. Dev Biol 264:275–288

    Article  PubMed  CAS  Google Scholar 

  146. Benjamin LE, Hemo I, Keshet E (1998) A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by pdgf- b and vegf. Development 125:1591–1598

    PubMed  CAS  Google Scholar 

  147. Gee MS, Procopio WN, Makonnen S, Feldman MD, Yeilding NM, Lee WM (2003) Tumor vessel development and maturation impose limits on the effectiveness of anti-vascular therapy. Am J Pathol 162:183–193

    Article  PubMed  Google Scholar 

  148. Helfrich I, Scheffrahn I, Bartling S, Weis J, von Felbert V, Middleton M, Kato M, Ergun S, Schadendorf D (2010) Resistance to antiangiogenic therapy is directed by vascular phenotype, vessel stabilization, and maturation in malignant melanoma. J Exp Med 207:491–503

    Article  PubMed  CAS  Google Scholar 

  149. Erber R, Thurnher A, Katsen AD, Groth G, Kerger H, Hammes HP, Menger MD, Ullrich A, Vajkoczy P (2004) Combined inhibition of vegf and pdgf signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J 18:338–340

    PubMed  CAS  Google Scholar 

  150. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    Article  PubMed  CAS  Google Scholar 

  151. Shaheen RM, Tseng WW, Davis DW, Liu W, Reinmuth N, Vellagas R, Wieczorek AA, Ogura Y, McConkey DJ, Drazan KE, Bucana CD, McMahon G, Ellis LM (2001) Tyrosine kinase inhibition of multiple angiogenic growth factor receptors improves survival in mice bearing colon cancer liver metastases by inhibition of endothelial cell survival mechanisms. Cancer Res 61:1464–1468

    PubMed  CAS  Google Scholar 

  152. Kuwabara T, Cogan DG (1963) Mural cells of the retinal capillaries. Arch Ophthalmol 69:492–502

    Article  PubMed  CAS  Google Scholar 

  153. Feldman PS, Shneidman D, Kaplan C (1978) Ultrastructure of infantile hemangioendothelioma of the liver. Cancer 42:521–527

    Article  PubMed  CAS  Google Scholar 

  154. Egginton S, Hudlicka O, Brown MD, Graciotti L, Granata AL (1996) In vivo pericyte-endothelial cell interaction during angiogenesis in adult cardiac and skeletal muscle. Microvasc Res 51:213–228

    Article  PubMed  CAS  Google Scholar 

  155. Crocker DJ, Murad TM, Geer JC (1970) Role of the pericyte in wound healing. An ultrastructural study. Exp Mol Pathol 13:51–65

    Article  PubMed  CAS  Google Scholar 

  156. Hobson B, Denekamp J (1984) Endothelial proliferation in tumours and normal tissues: continuous labelling studies. Br J Cancer 49:405–413

    Article  PubMed  CAS  Google Scholar 

  157. Vartanian RK, Weidner N (1994) Correlation of intratumoral endothelial cell proliferation with microvessel density (tumor angiogenesis) and tumor cell proliferation in breast carcinoma. Am J Pathol 144:1188–1194

    PubMed  CAS  Google Scholar 

  158. Wang Y, Li Y, Zhu G, Wang X, Wu S, Zhang L, Gao X (2000) ultrastructural and immunohistochemical characteristics of pericytes during neovascularization in breast carcinoma. Zhonghua Bing Li Xue Za Zhi 29:176–179

    PubMed  CAS  Google Scholar 

  159. Orlidge A, D'Amore PA (1987) Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells. J Cell Biol 105:1455–1462

    Article  PubMed  CAS  Google Scholar 

  160. Antonelli-Orlidge A, Saunders KB, Smith SR, D'Amore PA (1989) An activated form of transforming growth factor beta is produced by cocultures of endothelial cells and pericytes. Proc Natl Acad Sci U S A 86:4544–4548

    Article  PubMed  CAS  Google Scholar 

  161. Sato Y, Rifkin DB (1989) Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-beta 1-like molecule by plasmin during co-culture. J Cell Biol 109:309–315

    Article  PubMed  CAS  Google Scholar 

  162. Lafleur MA, Forsyth PA, Atkinson SJ, Murphy G, Edwards DR (2001) Perivascular cells regulate endothelial membrane type-1 matrix metalloproteinase activity. Biochem Biophys Res Commun 282:463–473

    Article  PubMed  CAS  Google Scholar 

  163. Davis GE, Camarillo CW (1996) An alpha 2 beta 1 integrin-dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix. Exp Cell Res 224:39–51

    Article  PubMed  CAS  Google Scholar 

  164. Salazar R, Bell SE, Davis GE (1999) Coordinate induction of the actin cytoskeletal regulatory proteins gelsolin, vasodilator-stimulated phosphoprotein, and profilin during capillary morphogenesis in vitro. Exp Cell Res 249:22–32

    Article  PubMed  CAS  Google Scholar 

  165. Davis GE, Pintar Allen KA, Salazar R, Maxwell SA (2001) Matrix metalloproteinase-1 and −9 activation by plasmin regulates a novel endothelial cell-mediated mechanism of collagen gel contraction and capillary tube regression in three-dimensional collagen matrices. J Cell Sci 114:917–930

    PubMed  CAS  Google Scholar 

  166. Saunders WB, Bayless KJ, Davis GE (2005) Mmp-1 activation by serine proteases and mmp-10 induces human capillary tubular network collapse and regression in 3d collagen matrices. J Cell Sci 118:2325–2340

    Article  PubMed  CAS  Google Scholar 

  167. Saunders WB, Bohnsack BL, Faske JB, Anthis NJ, Bayless KJ, Hirschi KK, Davis GE (2006) Coregulation of vascular tube stabilization by endothelial cell timp-2 and pericyte timp-3. J Cell Biol 175:179–191

    Article  PubMed  CAS  Google Scholar 

  168. Hayes AJ, Huang WQ, Yu J, Maisonpierre PC, Liu A, Kern FG, Lippman ME, McLeskey SW, Li LY (2000) Expression and function of angiopoietin-1 in breast cancer. Br J Cancer 83:1154–1160

    Article  PubMed  CAS  Google Scholar 

  169. Ahmad SA, Liu W, Jung YD, Fan F, Wilson M, Reinmuth N, Shaheen RM, Bucana CD, Ellis LM (2001) The effects of angiopoietin-1 and −2 on tumor growth and angiogenesis in human colon cancer. Cancer Res 61:1255–1259

    PubMed  CAS  Google Scholar 

  170. Hawighorst T, Skobe M, Streit M, Hong YK, Velasco P, Brown LF, Riccardi L, Lange-Asschenfeldt B, Detmar M (2002) Activation of the tie2 receptor by angiopoietin-1 enhances tumor vessel maturation and impairs squamous cell carcinoma growth. Am J Pathol 160:1381–1392

    Article  PubMed  CAS  Google Scholar 

  171. Satoh N, Yamada Y, Kinugasa Y, Takakura N (2008) Angiopoietin-1 alters tumor growth by stabilizing blood vessels or by promoting angiogenesis. Cancer Sci 99:2373–2379

    Article  PubMed  CAS  Google Scholar 

  172. Metheny-Barlow LJ, Li LY (2003) The enigmatic role of angiopoietin-1 in tumor angiogenesis. Cell Res 13:309–317

    Article  PubMed  CAS  Google Scholar 

  173. Stoeltzing O, Ahmad SA, Liu W, McCarty MF, Parikh AA, Fan F, Reinmuth N, Bucana CD, Ellis LM (2002) Angiopoietin-1 inhibits tumour growth and ascites formation in a murine model of peritoneal carcinomatosis. Br J Cancer 87:1182–1187

    Article  PubMed  CAS  Google Scholar 

  174. Nakanishi H, Okayama M, Oguri K, Hayashi K, Tateno H, Hosoda S (1991) Close association between tumour cells and vascular basement membrane in gastric cancers with liver metastasis. An immunohistochemical and electron microscopic study with special attention to extracellular matrices. Virchows Arch A Pathol Anat Histopathol 418:531–538

    Article  PubMed  CAS  Google Scholar 

  175. Paulus W, Roggendorf W, Schuppan D (1988) Immunohistochemical investigation of collagen subtypes in human glioblastomas. Virchows Arch A Pathol Anat Histopathol 413:325–332

    Article  PubMed  CAS  Google Scholar 

  176. Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I, Xu L, Hicklin DJ, Fukumura D, di Tomaso E, Munn LL, Jain RK (2004) Kinetics of vascular normalization by vegfr2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6:553–563

    PubMed  CAS  Google Scholar 

  177. Jeon H, Ono M, Kumagai C, Miki K, Morita A, Kitagawa Y (1996) Pericytes from microvessel fragment produce type iv collagen and multiple laminin isoforms. Biosci Biotechnol Biochem 60:856–861

    Article  PubMed  CAS  Google Scholar 

  178. Mandarino LJ, Sundarraj N, Finlayson J, Hassell HR (1993) Regulation of fibronectin and laminin synthesis by retinal capillary endothelial cells and pericytes in vitro. Exp Eye Res 57:609–621

    Article  PubMed  CAS  Google Scholar 

  179. Evensen L, Micklem DR, Blois A, Berge SV, Aarsaether N, Littlewood-Evans A, Wood J, Lorens JB (2009) Mural cell associated vegf is required for organotypic vessel formation. PLoS One 4:e5798

    Article  PubMed  Google Scholar 

  180. O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–285

    Article  PubMed  Google Scholar 

  181. Ergun S, Kilic N, Wurmbach JH, Ebrahimnejad A, Fernando M, Sevinc S, Kilic E, Chalajour F, Fiedler W, Lauke H, Lamszus K, Hammerer P, Weil J, Herbst H, Folkman J (2001) Endostatin inhibits angiogenesis by stabilization of newly formed endothelial tubes. Angiogenesis 4:193–206

    Article  PubMed  CAS  Google Scholar 

  182. Stratman AN, Malotte KM, Mahan RD, Davis MJ, Davis GE (2009) Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood 114:5091–5101

    Article  PubMed  CAS  Google Scholar 

  183. Nagy JA, Dvorak AM, Dvorak HF (2012) Vascular hyperpermeability, angiogenesis, and stroma generation. Cold Spring Harb Perspect Med 2:a006544

    PubMed  Google Scholar 

  184. Dewever J, Frerart F, Bouzin C, Baudelet C, Ansiaux R, Sonveaux P, Gallez B, Dessy C, Feron O (2007) Caveolin-1 is critical for the maturation of tumor blood vessels through the regulation of both endothelial tube formation and mural cell recruitment. Am J Pathol 171:1619–1628

    Article  PubMed  CAS  Google Scholar 

  185. Hellstrom M, Gerhardt H, Kalen M, Li X, Eriksson U, Wolburg H, Betsholtz C (2001) Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153:543–553

    Article  PubMed  CAS  Google Scholar 

  186. Dente CJ, Steffes CP, Speyer C, Tyburski JG (2001) Pericytes augment the capillary barrier in in vitro cocultures. J Surg Res 97:85–91

    Article  PubMed  CAS  Google Scholar 

  187. Kurzen H, Manns S, Dandekar G, Schmidt T, Pratzel S, Kraling BM (2002) Tightening of endothelial cell contacts: a physiologic response to cocultures with smooth-muscle-like 10t1/2 cells. J Invest Dermatol 119:143–153

    Article  PubMed  CAS  Google Scholar 

  188. Dohgu S, Takata F, Yamauchi A, Nakagawa S, Egawa T, Naito M, Tsuruo T, Sawada Y, Niwa M, Kataoka Y (2005) Brain pericytes contribute to the induction and up-regulation of blood–brain barrier functions through transforming growth factor-beta production. Brain Res 1038:208–215

    Article  PubMed  CAS  Google Scholar 

  189. Wang YL, Hui YN, Guo B, Ma JX (2007) Strengthening tight junctions of retinal microvascular endothelial cells by pericytes under normoxia and hypoxia involving angiopoietin-1 signal way. Eye 21:1501–1510

    Article  PubMed  CAS  Google Scholar 

  190. Hori S, Ohtsuki S, Hosoya K, Nakashima E, Terasaki T (2004) A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through tie-2 activation in vitro. J Neurochem 89:503–513

    Article  PubMed  CAS  Google Scholar 

  191. Hunter AW, Barker RJ, Zhu C, Gourdie RG (2005) Zonula occludens-1 alters connexin43 gap junction size and organization by influencing channel accretion. Mol Biol Cell 16:5686–5698

    Article  PubMed  CAS  Google Scholar 

  192. Rhett JM, Jourdan J, Gourdie RG (2011) Connexin 43 connexon to gap junction transition is regulated by zonula occludens-1. Mol Biol Cell 22:1516–1528

    Article  PubMed  CAS  Google Scholar 

  193. Yonenaga Y, Mori A, Onodera H, Yasuda S, Oe H, Fujimoto A, Tachibana T, Imamura M (2005) Absence of smooth muscle actin-positive pericyte coverage of tumor vessels correlates with hematogenous metastasis and prognosis of colorectal cancer patients. Oncology 69:159–166

    Article  PubMed  Google Scholar 

  194. Welen K, Jennbacken K, Tesan T, Damber JE (2009) Pericyte coverage decreases invasion of tumour cells into blood vessels in prostate cancer xenografts. Prostate Cancer Prostatic Dis 12:41–46

    Article  PubMed  CAS  Google Scholar 

  195. Taniguchi S, Takeoka M, Ehara T, Hashimoto S, Shibuki H, Yoshimura N, Shigematsu H, Takahashi K, Katsuki M (2001) Structural fragility of blood vessels and peritoneum in calponin h1-deficient mice, resulting in an increase in hematogenous metastasis and peritoneal dissemination of malignant tumor cells. Cancer Res 61:7627–7634

    PubMed  CAS  Google Scholar 

  196. Xian X, Hakansson J, Stahlberg A, Lindblom P, Betsholtz C, Gerhardt H, Semb H (2006) Pericytes limit tumor cell metastasis. J Clin Invest 116:642–651

    Article  PubMed  CAS  Google Scholar 

  197. Nissen LJ, Cao R, Hedlund EM, Wang Z, Zhao X, Wetterskog D, Funa K, Brakenhielm E, Cao Y (2007) Angiogenic factors fgf2 and pdgf-bb synergistically promote murine tumor neovascularization and metastasis. J Clin Invest 117:2766–2777

    Article  PubMed  CAS  Google Scholar 

  198. Melnyk O, Zimmerman M, Kim KJ, Shuman M (1999) Neutralizing anti-vascular endothelial growth factor antibody inhibits further growth of established prostate cancer and metastases in a pre-clinical model. J Urol 161:960–963

    Article  PubMed  CAS  Google Scholar 

  199. Wang S, Voisin MB, Larbi KY, Dangerfield J, Scheiermann C, Tran M, Maxwell PH, Sorokin L, Nourshargh S (2006) Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating neutrophils. J Exp Med 203:1519–1532

    Article  PubMed  CAS  Google Scholar 

  200. Voisin MB, Probstl D, Nourshargh S (2010) Venular basement membranes ubiquitously express matrix protein low-expression regions: characterization in multiple tissues and remodeling during inflammation. Am J Pathol 176:482–495

    Article  PubMed  CAS  Google Scholar 

  201. Weisshardt P, Trarbach T, Durig J, Paul A, Reis H, Tilki D, Miroschnik I, Ergun S, Klein D (2012) Tumor vessel stabilization and remodeling by anti-angiogenic therapy with bevacizumab. Histochem Cell Biol 137:391–401

    Article  PubMed  CAS  Google Scholar 

  202. Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91:1071–1121

    Article  PubMed  CAS  Google Scholar 

  203. Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, Kozak KR, Cahill DP, Chen PJ, Zhu M, Ancukiewicz M, Mrugala MM, Plotkin S, Drappatz J, Louis DN, Ivy P, Scadden DT, Benner T, Loeffler JS, Wen PY, Jain RK (2007) Azd2171, a pan-vegf receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11:83–95

    Article  PubMed  CAS  Google Scholar 

  204. Hwang JA, Lee EH, Kim HW, Park JB, Jeon BH, Cho CH (2009) Comp-ang1 potentiates the antitumor activity of 5-fluorouracil by improving tissue perfusion in murine lewis lung carcinoma. Mol Cancer Res 7:1920–1927

    Article  PubMed  CAS  Google Scholar 

  205. Dirkx AE, oude Egbrink MG, Castermans K, van der Schaft DW, Thijssen VL, Dings RP, Kwee L, Mayo KH, Wagstaff J, Bouma-ter Steege JC, Griffioen AW (2006) Anti-angiogenesis therapy can overcome endothelial cell anergy and promote leukocyte-endothelium interactions and infiltration in tumors. FASEB J 20:621–630

    Article  PubMed  CAS  Google Scholar 

  206. Hamzah J, Jugold M, Kiessling F, Rigby P, Manzur M, Marti HH, Rabie T, Kaden S, Grone HJ, Hammerling GJ, Arnold B, Ganss R (2008) Vascular normalization in rgs5-deficient tumours promotes immune destruction. Nature 453:410–414

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work of LJMB is supported by Public Health Service grant CA138727 from the National Institutes of Health. AS was supported by NIH T32 CA113267. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda J. Metheny-Barlow.

Additional information

Kalluri and colleagues recently provide evidence that decreased pericyte coverage of the tumor vasculature is associated with distant metastases and shorter disease-free survival of breast cancer patients. Further, they demonstrated that ablation of pericytes is associated with increased metastasis to lung in an orthotopic mouse model of breast cancer. Cooke et al., Cancer Cell 21:66–81, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barlow, K.D., Sanders, A.M., Soker, S. et al. Pericytes on the Tumor Vasculature: Jekyll or Hyde?. Cancer Microenvironment 6, 1–17 (2013). https://doi.org/10.1007/s12307-012-0102-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-012-0102-2

Keywords

Navigation