Skip to main content

Advertisement

Log in

Spinocerebellar ataxia 2 (SCA2)

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominantly inherited, neurodegenerative disease. It can manifest either with a cerebellar syndrome or as Parkinson’s syndrome, while later stages involve mainly brainstem, spinal cord and thalamus. This particular atrophy pattern resembles sporadic multi-system-atrophy (MSA) and results in some clinical features indicative of SCA2, such as early saccade slowing, early hyporeflexia, severe tremor of postural or action type, and early myoclonus. For treatment, levodopa is temporarily useful for rigidity/bradykinesia and for tremor, magnesium for muscle cramps, but neuroprotective therapy will depend on the elucidation of pathogenesis. The disease cause lies in the polyglutamine domain of the protein ataxin-2, which can expand in families over successive generations resulting in earlier onset age and faster progression. Genetic testing in SCA2 and other polyglutamine disorders like the well-studied Huntington’s disease is now readily available for family planning. Although these disorders differ clinically and in the affected neuron populations, it is not understood how the different polyglutamine proteins mediate such tissue specificity. The neuronal intranuclear inclusion bodies described in other polyglutamine disorders are not frequent in SCA2. For the quite ubiquitously expressed ataxin-2, a subcellular localization at the Golgi, the endoplasmic reticulum and the plasma membrane, in interaction with proteins of mRNA translation and of endocytosis have been observed. As a first victim of SCA2 degeneration, cerebellar Purkinje neurons may be preferentially susceptible to alterations of these subcellular pathways, and therefore our review aims to portray the particular profile of the SCA2 disease process and correlate it to the specific features of ataxin-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wadia NH, Swami RK. A new form of heredo-familial spinocerebellar degeneration with slow eye movements (nine families). Brain. 1971;94:359–74.

    Article  PubMed  CAS  Google Scholar 

  2. Orozco G, Estrada R, Perry TL, Arana J, Fernandez R, Gonzalez-Quevedo A, et al. Dominantly inherited olivopontocerebellar atrophy from Eastern Cuba: Clinical, neuropathological, and biochemical findings. J Neurol Sci. 1989;93:37–50.

    Article  PubMed  CAS  Google Scholar 

  3. Auburger G, Diaz GO, Capote RF, Sanchez SG, Perez MP, del Cueto ME, et al. Autosomal dominant ataxia: Genetic evidence for locus heterogeneity from a Cuban foundereffect population. Am J Hum Genet. 1990;46:1163–77.

    PubMed  CAS  Google Scholar 

  4. Orozco Diaz G, Nodarse Fleites A, Cordoves Sagaz R, Auburger G. Autosomal dominant cerebellar ataxia: Clinical analysis of 263 patients from a homogeneous population in Holguin, Cuba. Neurology. 1990;40:1369–75.

    PubMed  CAS  Google Scholar 

  5. Velazquez Perez L, Almaguer Mederos L, Santos Falcon N, Hechavarria R, Sanchez Cruz G, Paneque HM. [Spinocerebellar ataxia type 2 in Cuba. A study of the electrophysiological phenotype and its correlation with clinical and molecular variables]. Rev Neurol. 2001;33:1129–36.

    PubMed  CAS  Google Scholar 

  6. Sasaki H, Fukazawa T, Wakisaka A, Hamada K, Hamada T, Koyama T, et al. Central phenotype and related varieties of spinocerebellar ataxia 2 (SCA2): A clinical and genetic study with a pedigree in the Japanese. J Neurol Sci. 1996;144:176–81.

    Article  PubMed  CAS  Google Scholar 

  7. Gwinn-Hardy K, Chen JY, Liu HC, Liu TY, Boss M, Seltzer W, et al. Spinocerebellar ataxia type 2 with parkinsonism in ethnic Chinese. Neurology. 2000;55:800–5.

    PubMed  CAS  Google Scholar 

  8. Furtado S, Payami H, Lockhart PJ, Hanson M, Nutt JG, Singleton AA, et al. Profile of families with parkinsonismpredominant spinocerebellar ataxia type 2 (SCA2). Mov Disord. 2004;19:622–9.

    Article  PubMed  Google Scholar 

  9. Infante J, Berciano J, Volpini V, Corral J, Polo JM, Pascual J, et al. Spinocerebellar ataxia type 2 with Levodopa-responsive parkinsonism culminating in motor neuron disease. Mov Disord. 2004;19:848–52.

    Article  PubMed  Google Scholar 

  10. Lu CS, Chang HC, Kuo PC, Liu YL, Wu WS, Weng YH, et al. The parkinsonian phenotype of spinocerebellar ataxia type 3 in a Taiwanese family. Parkinsonism Relat Disord. 2004;10:369–73.

    Article  PubMed  Google Scholar 

  11. Shan DE, Liu RS, Sun CM, Lee SJ, Liao KK, Soong BW. Presence of spinocerebellar ataxia type 2 gene mutation in a patient with apparently sporadic Parkinson’s disease: Clinical implications. Mov Disord. 2004;19:1357–60.

    Article  PubMed  Google Scholar 

  12. Simon-Sanchez J, Hanson M, Singleton A, Hernandez D, McInerney A, Nussbaum R, et al. Analysis of SCA-2 and SCA-3 repeats in Parkinsonism: evidence of SCA-2 expansion in a family with autosomal dominant Parkinson’s disease. Neurosci Lett. 2005;382:191–4.

    Article  PubMed  CAS  Google Scholar 

  13. Sanchez-Cruz G, Velazquez-Perez L, Gomez-Pena L, Martinez-Gongora E, Castellano-Sanchez G, Santos-Falcon N. [Dysautonomic features in patients with Cuban type 2 spinocerebellar ataxia]. Rev Neurol. 2001;33:428–34.

    PubMed  CAS  Google Scholar 

  14. Trojano L, Chiacchio L, Grossi D, Pisacreta AI, Calabrese O, Castaldo I, et al. Determinants of cognitive disorders in Autosomal Dominant Cerebellar Ataxia type 1. J Neurol Sci. 1998;157:162–7.

    Article  PubMed  CAS  Google Scholar 

  15. Storey E, Forrest SM, Shaw JH, Mitchell P, Gardner RJ. Spinocerebellar ataxia type 2: clinical features of a pedigree displaying prominent frontal-executive dysfunction. Arch Neurol. 1999;56:43–50.

    Article  PubMed  CAS  Google Scholar 

  16. Le Pira F, Zappala G, Saponara R, Domina E, Restivo D, Reggio E, et al. Cognitive findings in spinocerebellar ataxia type 2: Relationship to genetic and clinical variables. J Neurol Sci. 2002;201:53–7.

    Article  PubMed  Google Scholar 

  17. Burk K, Globas C, Bosch S, Klockgether T, Zuhlke C, Daum I, et al. Cognitive deficits in spinocerebellar ataxia type 1, 2, and 3. J Neurol. 2003;250:207–11.

    Article  PubMed  CAS  Google Scholar 

  18. Reynaldo-Arminan RD, Reynaldo-Hernandez R, Paneque-Herrera M, Prieto-Avila L, Perez-Ruiz E. [Mental disorders in patients with spinocerebellar ataxia type 2 in Cuba]. Rev Neurol. 2002;35:818–21.

    PubMed  CAS  Google Scholar 

  19. Klockgether T, Ludtke R, Kramer B, Abele M, Burk K, Schols L, et al. The natural history of degenerative ataxia: a retrospective study in 466 patients. Brain. 1998;121(Pt 4):589–600.

    Article  PubMed  Google Scholar 

  20. Maschke M, Oehlert G, Xie TD, Perlman S, Subramony SH, Kumar N, et al. Clinical feature profile of spinocerebellar ataxia type 1-8 predicts genetically defined subtypes. Mov Disord. 2005;20:1405–12.

    Article  PubMed  Google Scholar 

  21. Cancel G, Durr A, Didierjean O, Imbert G, Burk K, Lezin A, et al. Molecular and clinical correlations in spinocerebellar ataxia 2: A study of 32 families. Hum Mol Genet. 1997;6:709–15.

    Article  PubMed  CAS  Google Scholar 

  22. Schols L, Gispert S, Vorgerd M, Menezes Vieira-Saecker AM, Blanke P, Auburger G, et al. Spinocerebellar ataxia type 2. Genotype and phenotype in German kindreds. Arch Neurol. 1997;54:1073–80.

    PubMed  CAS  Google Scholar 

  23. Sasaki H, Wakisaka A, Sanpei K, Takano H, Igarashi S, Ikeuchi T, et al. Phenotype variation correlates with CAG repeat length in SCA2 – a study of 28 Japanese patients. J Neurol Sci. 1998;159:202–8.

    Article  PubMed  CAS  Google Scholar 

  24. Filla A, De Michele G, Santoro L, Calabrese O, Castaldo I, Giuffrida S, et al. Spinocerebellar ataxia type 2 in southern Italy: a clinical and molecular study of 30 families. J Neurol. 1999;246:467–71.

    Article  PubMed  CAS  Google Scholar 

  25. Velazquez-Perez L, Seifried C, Santos-Falcon N, Abele M, Ziemann U, Almaguer LE, et al. Saccade velocity is controlled by polyglutamine size in spinocerebellar ataxia 2. Ann Neurol. 2004;56:444–7.

    Article  PubMed  Google Scholar 

  26. De Rosa A, Striano P, Barbieri F, De Falco A, Rinaldi C, Tucci T, et al. Suppression of myoclonus in SCA2 by piracetam. Mov Disord. 2005;21:116–8.

    Article  Google Scholar 

  27. Babovic-Vuksanovic D, Snow K, Patterson MC, Michels VV. Spinocerebellar ataxia type 2 (SCA 2) in an infant with extreme CAG repeat expansion. Am J Med Genet. 1998;79:383–7.

    Article  PubMed  CAS  Google Scholar 

  28. Rufa A, Dotti MT, Galli L, Orrico A, Sicurelli F, Federico A. Spinocerebellar ataxia type 2 (SCA2) associated with retinal pigmentary degeneration. Eur Neurol. 2002;47:128–9.

    Article  PubMed  Google Scholar 

  29. Tan NC, Zhou Y, Tan AS, Chong SS, Lee WL. Spinocerebellar ataxia type 2 with focal epilepsy–an unusual association. Ann Acad Med Singapore. 2004;33:103–6.

    PubMed  CAS  Google Scholar 

  30. Mao R, Aylsworth AS, Potter N, Wilson WG, Breningstall G, Wick MJ, et al. Childhood-onset ataxia: testing for large CAG-repeats in SCA2 and SCA7. Am J Med Genet. 2002;110:338–45.

    Article  PubMed  Google Scholar 

  31. Rivaud-Pechoux S, Durr A, Gaymard B, Cancel G, Ploner CJ, Agid Y, et al. Eye movement abnormalities correlate with genotype in autosomal dominant cerebellar ataxia type I. Ann Neurol. 1998;43:297–302.

    Article  PubMed  CAS  Google Scholar 

  32. Burk K, Fetter M, Abele M, Laccone F, Brice A, Dichgans J, et al. Autosomal dominant cerebellar ataxia type I: Oculomotor abnormalities in families with SCA1, SCA2, and SCA3. J Neurol. 1999;246:789–97.

    Article  PubMed  CAS  Google Scholar 

  33. Kubis N, Durr A, Gugenheim M, Chneiweiss H, Mazzetti P, Brice A, et al. Polyneuropathy in autosomal dominant cerebellar ataxias: Phenotype-genotype correlation. Muscle Nerve. 1999;22:712–7.

    Article  PubMed  CAS  Google Scholar 

  34. Velazquez-Perez L, Santos FN, Garcia R, Paneque HM, Hechavarria PR. [Epidemiology of Cuban hereditary ataxia]. Rev Neurol. 2001;32:606–11.

    PubMed  CAS  Google Scholar 

  35. van de Warrenburg BP, Notermans NC, Schelhaas HJ, van Alfen N, Sinke RJ, Knoers NV, et al. Peripheral nerve involvement in spinocerebellar ataxias. Arch Neurol. 2004;61:257–61.

    Article  PubMed  Google Scholar 

  36. Perretti A, Santoro L, Lanzillo B, Filla A, De Michele G, Barbieri F, et al. Autosomal dominant cerebellar ataxia type I: multimodal electrophysiological study and comparison between SCA1 and SCA2 patients. J Neurol Sci. 1996;142:45–53.

    Article  PubMed  CAS  Google Scholar 

  37. Abele M, Burk K, Andres F, Topka H, Laccone F, Bosch S, et al. Autosomal dominant cerebellar ataxia type I. Nerve conduction and evoked potential studies in families with SCA1, SCA2 and SCA3. Brain. 1997;120(Pt 12):2141–8.

    Article  PubMed  Google Scholar 

  38. Yokota T, Sasaki H, Iwabuchi K, Shiojiri T, Yoshino A, Otagiri A, et al. Electrophysiological features of central motor conduction in spinocerebellar atrophy type 1, type 2, and Machado-Joseph disease. J Neurol Neurosurg Psychiatry. 1998;65:530–4.

    Article  PubMed  CAS  Google Scholar 

  39. Schwenkreis P, Tegenthoff M, Witscher K, Bornke C, Przuntek H, Malin JP, et al. Motor cortex activation by transcranial magnetic stimulation in ataxia patients depends on the genetic defect. Brain. 2002;125:301–9.

    Article  PubMed  Google Scholar 

  40. Restivo DA, Lanza S, Giuffrida S, Le Pira F, Drago MT, Di Mauro R, et al. Cortical silent period prolongation in spinocerebellar ataxia type 2 (SCA2). Funct Neurol. 2004;19:37–41.

    PubMed  Google Scholar 

  41. Boesch SM, Frauscher B, Brandauer E, Wenning GK, Hogl B, Poewe W. Disturbance of rapid eye movement sleep in spinocerebellar ataxia type 2. Mov Disord. 2006;21:1751–4.

    Article  PubMed  Google Scholar 

  42. Tuin I, Voss U, Kang J-S, Kessler K, Rüb U, Nolte D, et al. Stages of sleep pathology in spinocerebellar ataxia type 2 (SCA2). Neurology. 2006;67:1966–72.

    Article  PubMed  CAS  Google Scholar 

  43. Rakowicz M, Zdzienicka E, Poniatowska R, Waliniowska E, Sulek A, Jakubowska T, et al. [Spinocerebellar ataxias type 1 and 2: comparison of clinical, electrophysiological and magnetic resonance evaluation.]. Neurol Neurochir Pol. 2005;39:1263–275.

    Google Scholar 

  44. Burk K, Abele M, Fetter M, Dichgans J, Skalej M, Laccone F, et al. Autosomal dominant cerebellar ataxia type I clinical features and MRI in families with SCA1, SCA2 and SCA3. Brain. 1996;119(Pt 5):1497–505.

    Article  PubMed  Google Scholar 

  45. Giuffrida S, Saponara R, Restivo DA, Trovato Salinaro A, Tomarchio L, Pugliares P, et al. Supratentorial atrophy in spinocerebellar ataxia type 2: MRI study of 20 patients. J Neurol. 1999;246:383–8.

    Article  PubMed  CAS  Google Scholar 

  46. Brenneis C, Bosch SM, Schocke M, Wenning GK, Poewe W. Atrophy pattern in SCA2 determined by voxelbased morphometry. Neuroreport. 2003;14:1799–802.

    Article  PubMed  Google Scholar 

  47. Inagaki A, Iida A, Matsubara M, Inagaki H. Positron emission tomography and magnetic resonance imaging in spinocerebellar ataxia type 2: A study of symptomatic and asymptomatic individuals. Eur J Neurol. 2005;12:725–8.

    Article  PubMed  CAS  Google Scholar 

  48. Brenneis C, Boesch SM, Egger KE, Seppi K, Scherfler C, Schocke M, et al. Cortical atrophy in the cerebellar variant of multiple system atrophy: A voxel-based morphometry study. Mov Disord. 2005;21:159–65.

    Article  Google Scholar 

  49. Boesch SM, Donnemiller E, Muller J, Seppi K, Weirich-Schwaiger H, Poewe W, et al. Abnormalities of dopaminergic neurotransmission in SCA2: a combined 123I-betaCIT and 123I-IBZM SPECT study. Mov Disord. 2004;19:1320–5.

    Article  PubMed  Google Scholar 

  50. Wullner U, Reimold M, Abele M, Burk K, Minnerop M, Dohmen BM, et al. Dopamine transporter positron emission tomography in spinocerebellar ataxias type 1, 2, 3, and 6. Arch Neurol. 2005;62:1280–5.

    Article  PubMed  Google Scholar 

  51. Boesch SM, Schocke M, Burk K, Hollosi P, Fornai F, Aichner FT, et al. Proton magnetic resonance spectroscopic imaging reveals differences in spinocerebellar ataxia types 2 and 6. J Magn Reson Imaging. 2001;13:553–9.

    Article  PubMed  CAS  Google Scholar 

  52. Estrada R, Galarraga J, Orozco G, Nodarse A, Auburger G. Spinocerebellar ataxia 2 (SCA2): morphometric analyses in 11 autopsies. Acta Neuropathol (Berl). 1999;97:306–10.

    Article  CAS  Google Scholar 

  53. Gierga K, Burk K, Bauer M, Orozco Diaz G, Auburger G, Schultz C, et al. Involvement of the cranial nerves and their nuclei in spinocerebellar ataxia type 2 (SCA2). Acta Neuropathol (Berl). 2005;109:617–31.

    Article  CAS  Google Scholar 

  54. Rub U, Del Turco D, Burk K, Diaz GO, Auburger G, Mittelbronn M, et al. Extended pathoanatomical studies point to a consistent affection of the thalamus in spinocerebellar ataxia type 2. Neuropathol Appl Neurobiol. 2005;31:127–40.

    Article  PubMed  CAS  Google Scholar 

  55. Rub U, Seidel K, Ozerden I, Gierga K, Brunt ER, Schols L, et al. Consistent affection of the central somatosensory system in spinocerebellar ataxia type 2 and type 3 and its significance for clinical symptoms and rehabilitative therapy. Brain Res Rev. 2007;53:235–49.

    Article  PubMed  CAS  Google Scholar 

  56. Ying SH, Choi SI, Lee M, Perlman SL, Baloh RW, Toga AW, et al. Relative atrophy of the flocculus and ocular motor dysfunction in SCA2 and SCA6. Ann N Y Acad Sci. 2005;1039:430–5.

    Article  PubMed  CAS  Google Scholar 

  57. Rub U, Gierga K, Brunt ER, de Vos RA, Bauer M, Schols L, et al. Spinocerebellar ataxias types 2 and 3: degeneration of the precerebellar nuclei isolates the three phylogenetically defined regions of the cerebellum. J Neural Transm. 2005;112:1523–45.

    Article  PubMed  CAS  Google Scholar 

  58. Rub U, Brunt ER, Petrasch-Parwez E, Schols L, Theegarten D, Auburger G, et al. Degeneration of ingestion-related brainstem nuclei in spinocerebellar ataxia type 2, 3, 6 and 7. Neuropathol Appl Neurobiol. 2006;32:635–49.

    Article  PubMed  CAS  Google Scholar 

  59. Huynh DP, Del Bigio MR, Ho DH, Pulst SM. Expression of ataxin-2 in brains from normal individuals and patients with Alzheimer’s disease and spinocerebellar ataxia 2. Ann Neurol. 1999;45:232–41.

    Article  PubMed  CAS  Google Scholar 

  60. Rub U, Schultz C, Del Tredici K, Gierga K, Reifenberger G, de Vos RA, et al. Anatomically based guidelines for systematic investigation of the central somatosensory system and their application to a spinocerebellar ataxia type 2 (SCA2) patient. Neuropathol Appl Neurobiol. 2003;29:418–33.

    Article  PubMed  CAS  Google Scholar 

  61. Malandrini A, Galli L, Villanova M, Palmeri S, Parrotta E, DeFalco D, et al. CAG repeat expansion in an italian family with spinocerebellar ataxia type 2 (SCA2): A clinical and genetic study. Eur Neurol. 1998;40:164–8.

    Article  PubMed  CAS  Google Scholar 

  62. Yagishita S, Inoue M. Clinicopathology of spinocerebellar degeneration: Its correlation to the unstable CAG repeat of the affected gene. Pathol Int. 1997;47:1–15.

    PubMed  CAS  Google Scholar 

  63. Armstrong J, Bonaventura I, Rojo A, Gonzalez G, Corral J, Nadal N, et al. Spinocerebellar ataxia type 2 (SCA2) with white matter involvement. Neurosci Lett. 2005;381:247–51.

    Article  PubMed  CAS  Google Scholar 

  64. Berciano J, Ferrer I. Glial cell cytoplasmic inclusions in SCA2 do not express alpha-synuclein. J Neurol. 2005;252:742–4.

    Article  PubMed  Google Scholar 

  65. Koyano S, Iwabuchi K, Yagishita S, Kuroiwa Y, Uchihara T. Paradoxical absence of nuclear inclusion in cerebellar Purkinje cells of hereditary ataxias linked to CAG expansion. J Neurol Neurosurg Psychiatry. 2002;73:450–2.

    Article  PubMed  CAS  Google Scholar 

  66. Pang JT, Giunti P, Chamberlain S, An SF, Vitaliani R, Scaravilli T, et al. Neuronal intranuclear inclusions in SCA2: a genetic, morphological and immunohistochemical study of two cases. Brain. 2002;125:656–63.

    Article  PubMed  Google Scholar 

  67. Uchihara T, Fujigasaki H, Koyano S, Nakamura A, Yagishita S, Iwabuchi K. Non-expanded polyglutamine proteins in intranuclear inclusions of hereditary ataxias – triple-labeling immunofluorescence study. Acta Neuropathol (Berl). 2001;102:149–52.

    CAS  Google Scholar 

  68. Huynh DP, Figueroa K, Hoang N, Pulst SM. Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human. Nat Genet. 2000;26:44–50.

    Article  PubMed  CAS  Google Scholar 

  69. Gispert S, Twells R, Orozco G, Brice A, Weber J, Heredero L, et al. Chromosomal assignment of the second locus for autosomal dominant cerebellar ataxia (SCA2) to chromosome 12q23–24.1. Nat Genet. 1993;4:295–9.

    Article  PubMed  CAS  Google Scholar 

  70. Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet. 1996;14:269–76.

    Article  PubMed  CAS  Google Scholar 

  71. Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier JM, et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet. 1996;14:285–91.

    Article  PubMed  CAS  Google Scholar 

  72. Sanpei K, Takano H, Igarashi S, Sato T, Oyake M, Sasaki H, et al. Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet. 1996;14:277–84.

    Article  PubMed  CAS  Google Scholar 

  73. Pulst SM, Santos N, Wang D, Yang H, Huynh D, Velazquez L, et al. Spinocerebellar ataxia type 2: polyQ repeat variation in the CACNA1A calcium channel modifies age of onset. Brain. 2005;128:2297–303.

    Article  PubMed  Google Scholar 

  74. Pujana MA, Corral J, Gratacos M, Combarros O, Berciano J, Genis D, et al. Spinocerebellar ataxias in Spanish patients: Genetic analysis of familial and sporadic cases. The Ataxia Study Group. Hum Genet. 1999;104:516–22.

    Article  PubMed  CAS  Google Scholar 

  75. Sahba S, Nechiporuk A, Figueroa KP, Nechiporuk T, Pulst SM. Genomic structure of the human gene for spinocerebellar ataxia type 2 (SCA2) on chromosome 12q24.1. Genomics. 1998;47:359–64.

    Article  PubMed  CAS  Google Scholar 

  76. Affaitati A, de Cristofaro T, Feliciello A, Varrone S. Identification of alternative splicing of spinocerebellar ataxia type 2 gene. Gene. 2001;267:89–93.

    Article  PubMed  CAS  Google Scholar 

  77. Nechiporuk T, Huynh DP, Figueroa K, Sahba S, Nechiporuk A, Pulst SM. The mouse SCA2 gene: cDNA sequence, alternative splicing and protein expression. Hum Mol Genet. 1998;7:1301–9.

    Article  PubMed  CAS  Google Scholar 

  78. Albrecht M, Golatta M, Wullner U, Lengauer T. Structural and functional analysis of ataxin-2 and ataxin-3. Eur J Biochem. 2004;271:3155–70.

    Article  PubMed  CAS  Google Scholar 

  79. Neuwald AF, Koonin EV. Ataxin-2, global regulators of bacterial gene expression, and spliceosomal snRNP proteins share a conserved domain. J Mol Med. 1998;76:3–5.

    Article  PubMed  CAS  Google Scholar 

  80. Satterfield TF, Pallanck LJ. Ataxin-2 and its Drosophila homolog, ATX2, physically assemble with polyribosomes. Hum Mol Genet. 2006;15:2523–32.

    Article  PubMed  CAS  Google Scholar 

  81. Meunier C, Bordereaux D, Porteu F, Gisselbrecht S, Chretien S, Courtois G. Cloning and characterization of a family of proteins associated with Mpl. J Biol Chem. 2002;277:9139–47.

    Article  PubMed  CAS  Google Scholar 

  82. Shibata H, Huynh DP, Pulst SM. A novel protein with RNA-binding motifs interacts with ataxin-2. Hum Mol Genet. 2000;9:1303–13.

    Article  PubMed  CAS  Google Scholar 

  83. Huynh DP, Yang HT, Vakharia H, Nguyen D, Pulst SM. Expansion of the polyQ repeat in ataxin-2 alters its Golgi localization, disrupts the Golgi complex and causes cell death. Hum Mol Genet. 2003;12:1485–96.

    Article  PubMed  CAS  Google Scholar 

  84. Turnbull VJ, Storey E, Tarlac V, Walsh R, Stefani D, Clark R, et al. Different ataxin-2 antibodies display different immunoreactive profiles. Brain Res. 2004;1027:103–16.

    Article  PubMed  CAS  Google Scholar 

  85. Chen HK, Fernandez-Funez P, Acevedo SF, Lam YC, Kaytor MD, Fernandez MH, et al. Interaction of Aktphosphorylated ataxin-1 with 14-3-3 mediates neurodegeneration in spinocerebellar ataxia type 1. Cell. 2003;113:457–68.

    Article  PubMed  CAS  Google Scholar 

  86. Berg D, Holzmann C, Riess O. 14–3–3 proteins in the nervous system. Nat Rev Neurosci. 2003;4:752–62.

    Article  PubMed  CAS  Google Scholar 

  87. Ralser M, Albrecht M, Nonhoff U, Lengauer T, Lehrach H, Krobitsch S. An integrative approach to gain insights into the cellular function of human ataxin-2. J Mol Biol. 2005;346:203–14.

    Article  PubMed  CAS  Google Scholar 

  88. Bravo J, Aguilar-Henonin L, Olmedo G, Guzman P. Four distinct classes of proteins as interaction partners of the PABC domain of Arabidopsis thaliana Poly(A)-binding proteins. Mol Genet Genomics. 2005;272:651–65.

    Article  PubMed  CAS  Google Scholar 

  89. Kedersha N, Anderson P. Stress granules: Sites of mRNA triage that regulate mRNA stability and translatability. Biochem Soc Trans. 2002;30:963–9.

    Article  PubMed  CAS  Google Scholar 

  90. Villace P, Marion RM, Ortin J. The composition of Staufencontaining RNA granules from human cells indicates their role in the regulated transport and translation of messenger RNAs. Nucleic Acids Res. 2004;32:2411–20.

    Article  PubMed  CAS  Google Scholar 

  91. Ciosk R, DePalma M, Priess JR. ATX-2, the C. elegans ortholog of ataxin 2, functions in translational regulation in the germline. Development. 2004;131:4831–41.

    Article  PubMed  CAS  Google Scholar 

  92. Vernet C, Artzt K. STAR, a gene family involved in signal transduction and activation of RNA. Trends Genet. 1997;13:479–84.

    Article  PubMed  CAS  Google Scholar 

  93. Lim J, Hao T, Shaw C, Patel AJ, Szabo G, Rual JF, et al. A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell. 2006;125:801–14.

    Article  PubMed  CAS  Google Scholar 

  94. Ralser M, Nonhoff U, Albrecht M, Lengauer T, Wanker EE, Lehrach H, et al. Ataxin-2 and huntingtin interact with endophilin-A complexes to function in plastin-associated pathways. Hum Mol Genet. 2005;14:2893–909.

    Article  PubMed  CAS  Google Scholar 

  95. Micheva KD, Ramjaun AR, Kay BK, McPherson PS. SH3 domain-dependent interactions of endophilin with amphiphysin. FEBS Lett. 1997;414:308–12.

    Article  PubMed  CAS  Google Scholar 

  96. de Heuvel E, Bell AW, Ramjaun AR, Wong K, Sossin WS, McPherson PS. Identification of the major synaptojaninbinding proteins in brain. J Biol Chem. 1997;272:8710–6.

    Article  PubMed  Google Scholar 

  97. Soubeyran P, Kowanetz K, Szymkiewicz I, Langdon WY, Dikic I. Cbl-CIN85-endophilin complex mediates ligandinduced downregulation of EGF receptors. Nature. 2002;416:183–7.

    Article  PubMed  CAS  Google Scholar 

  98. Satterfield TF, Jackson SM, Pallanck LJ. A Drosophila homolog of the polyglutamine disease gene SCA2 is a dosage-sensitive regulator of actin filament formation. Genetics. 2002;162:1687–702.

    PubMed  CAS  Google Scholar 

  99. Huynh DP, Scoles DR, Nguyen D, Pulst SM. The autosomal recessive juvenile Parkinson disease gene product, parkin, interacts with and ubiquitinates synaptotagmin XI. Hum Mol Genet. 2003;12:2587–97.

    Article  PubMed  CAS  Google Scholar 

  100. Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell. 2001;105:891–902.

    Article  PubMed  CAS  Google Scholar 

  101. Huynh DP, Nguyen DT, Pulst-Korenberg JB, Brice A, Pulst SM. Parkin is an E3 ubiquitin-ligase for normal and mutant ataxin-2 and prevents ataxin-2-induced cell death. Exp Neurol. 2007;203:531–41.

    Article  PubMed  CAS  Google Scholar 

  102. Aguiar J, Fernandez J, Aguilar A, Mendoza Y, Vazquez M, Suarez J, et al. Ubiquitous expression of human SCA2 gene under the regulation of the SCA2 self promoter cause specific Purkinje cell degeneration in transgenic mice. Neurosci Lett. 2006;392:202–6.

    Article  PubMed  CAS  Google Scholar 

  103. Freund H-J, Barnikol UB, Nolte D, Treuer H, Auburger G, Tass PA, et al. Subthalamic-thalamic DBS in a case with spinocerebellar ataxia type 2 and severe tremor – an unusual clinical benefit. 2007;22:732–5.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Auburger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lastres-Becker, I., Rüb, U. & Auburger, G. Spinocerebellar ataxia 2 (SCA2). Cerebellum 7, 115–124 (2008). https://doi.org/10.1007/s12311-008-0019-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-008-0019-y

Key words

Navigation