Skip to main content
Log in

Cerebellar Damage Loosens the Strategic Use of the Spatial Structure of the Search Space

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The influence of a hemicerebellar lesion on the exploration of environments with different spatial distributions of multiple rewards was analyzed. Hemicerebellectomized (HCbed) and intact rats were submitted to a search task in which they had to explore nine food trays in an open field, avoiding repeated visits. Trays were spatially arranged in four configurations: cross, 3 × 3 matrix, circle, and three clusters of three trays each. Lesioned and intact rats’ performances improved in all configurations used. However, the explorative activity of the HCbed animals differed from that of intact rats. Lesioned animals spent more time, made more errors, displayed lower search efficiency, exhibited shorter final spans, and traveled longer distances. They tended to perseverate and to neglect some trays. The cerebellar damage differentially influenced performances as a specific effect of the susceptibility of the configurations to being explored in a principled way. In the cross configuration that had strong spatial constraints, both groups made their lowest number of errors. In the circle configuration, the altered explorative strategies of lesioned animals made extremely demanding the acquisition of the task of searching multiple rewards, in spite of the attempt of favoring their altered procedures through an appropriate spatial arrangement. Since the procedural impairment elicited by cerebellar damage affected the central exploration, the matrix configuration was the most difficult configuration to be explored by the HCbed rats. The poor performances in the cluster configuration indicated that chunking was a strategy of relative strength in rats in general and in HCbed rats in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Petrosini L, Molinari M, Dell’Anna ME (1996) Cerebellar contribution to spatial event processing: Morris water maze and T-maze. Eur J Neurosci 8:1882–1896

    Article  CAS  PubMed  Google Scholar 

  2. Leggio MG, Neri P, Graziano A, Mandolesi L, Molinari M, Petrosini L (1999) Cerebellar contribution to spatial event processing: characterization of procedural learning. Exp Brain Res 127:1–11

    Article  CAS  PubMed  Google Scholar 

  3. Mandolesi L, Leggio MG, Graziano A, Neri P, Petrosini L (2001) Cerebellar contribution to spatial event processing: involvement in procedural and working memory components. Eur J Neurosci 14:2011–2022

    Article  CAS  PubMed  Google Scholar 

  4. Rondi-Reig L, Le Marec N, Caston J, Mariani J (2002) The role of climbing and parallel fibers inputs to cerebellar cortex in navigation. Behav Brain Res 132:11–18

    Article  PubMed  Google Scholar 

  5. Petrosini L, Leggio MG, Molinari M (1998) The cerebellum in the spatial problem solving: a co-star or a guest star? Progr Neurobiol 56:191–210

    Article  CAS  Google Scholar 

  6. Mandolesi L, Leggio MG, Spirito F, Petrosini L (2003) Cerebellar contribution to spatial event processing: do spatial procedures contribute to formation of spatial declarative knowledge? Eur J Neurosci 18:2618–2626

    Article  CAS  PubMed  Google Scholar 

  7. Lalonde R, Botez MI, Boivin D (1987) Object exploration in staggerer mutant mice. Physiol Behav 41:115–117

    Article  CAS  PubMed  Google Scholar 

  8. Belzung C, Chapillon P, Lalonde R (2001) The effects of the lurcher mutation on object localization, T-maze discrimination, and radial arm maze tasks. Behav Genet 31:151–155

    Article  CAS  PubMed  Google Scholar 

  9. Lalonde R, Strazielle C (2003) The effects of cerebellar damage on maze learning in animals. Cerebellum 2:300–339

    Article  CAS  PubMed  Google Scholar 

  10. Lalonde R, Botez MI (1985) Exploration and habituation in nervous mutant mice. Behav Brain Res 17:83–86

    Article  CAS  PubMed  Google Scholar 

  11. Lalonde R (1987) Exploration and spatial learning in staggerer mutant mice. J Neurogenet 4:285–291

    CAS  PubMed  Google Scholar 

  12. Lalonde R, Manseau M, Botez MI (1989) Exploration and habituation in Purkinje cell degeneration mutant mice. Brain Res 479:201–203

    Article  CAS  PubMed  Google Scholar 

  13. Lalonde R, Manseau M, Botez MI (1988) Spontaneous alternation and exploration in staggerer mutant mice. Behav Brain Res 27:273–276

    Article  CAS  PubMed  Google Scholar 

  14. Dahhaoui M, Caston J, Lannou J, Avenel S (1992) Role of the cerebellum in habituation exploration behavior in the rat. Physiol Behav 52:339–344

    Article  CAS  PubMed  Google Scholar 

  15. Joyal CC, Meyer C, Jacquart G, Mahler P, Caston J, Lalonde R (1996) Effects of midline and lateral cerebellar lesions on motor coordination and spatial orientation. Brain Res 739:1–11

    Article  CAS  PubMed  Google Scholar 

  16. Caston J, Chianale C, Delhaye-Bouchaud N, Mariani J (1998) Role of the cerebellum in exploration behavior. Brain Res 808:232–237

    Article  CAS  PubMed  Google Scholar 

  17. Foti F, Spirito F, Mandolesi L, Aversano M, Petrosini L (2007) Effects of spatial food distribution on search behavior in rats (Rattus norvegicus). J Comp Psychol 121:290–299

    Article  PubMed  Google Scholar 

  18. Molinari M, Petrosini L, Gremoli T (1990) Hemicerebellectomy and motor behaviour in rats. II. Effects of cerebellar lesion performed at different developmental stages. Exp Brain Res 82:483–492

    Article  CAS  PubMed  Google Scholar 

  19. Molinari M, Grammaldo LG, Petrosini L (1997) Cerebellar contribution to spatial event processing: right/left discrimination abilities in rats. Eur J Neurosci 9:1986–1992

    Article  CAS  PubMed  Google Scholar 

  20. Leggio MG, Molinari M, Neri P, Graziano A, Mandolesi L, Petrosini L (2000) Representation of actions in rats: the role of cerebellum in learning spatial performances by observation. Proc Natl Acad Sci U S A 97:2320–2325

    Article  CAS  PubMed  Google Scholar 

  21. Mandolesi L, Leggio MG, Spirito F, Federico F, Petrosini L (2007) Is the cerebellum involved in the visuo-locomotor associative learning? Behav Brain Res 184:47–56

    Article  PubMed  Google Scholar 

  22. Colombel C, Lalonde R, Caston J (2004) The effects of unilateral removal of the cerebellar hemispheres on spatial learning and memory in rats. Brain Res 1004:108–115

    Article  CAS  PubMed  Google Scholar 

  23. De Bartolo P, Mandolesi L, Federico F, Foti F, Cutuli D, Gelfo F et al (2009) Cerebellar involvement in cognitive flexibility. Neurobiol Learn Mem 92:310–317. doi:10.1016/j.nlm.2009.03.008

    Article  PubMed  Google Scholar 

  24. Mandolesi L, Foti F, Cutuli D, Laricchiuta D, Gelfo F, De Bartolo P, Petrosini L (2009) Features of sequential learning in hemicerebellectomized rats. J Neurosci Res. doi:10.1002/jnr.22220

  25. De Lillo C, Visalberghi E, Aversano M (1997) The organization of exhaustive searches in a patchy space by capuchin monkeys (Cebus apella). J Comp Psychol 111:82–90

    Article  Google Scholar 

  26. De Lillo C, Aversano M, Tuci E, Visalberghi E (1998) Spatial constraints and regulatory functions in monkeys’ (Cebus apella) search. J Comp Psychol 112:353–362

    Article  Google Scholar 

  27. Valsecchi P, Bartolomucci A, Aversano M, Visalberghi E (2000) Learning to cope with two different food distributions: the performance of house mice (Mus musculus). J Comp Psychol 114:272–280

    Article  CAS  PubMed  Google Scholar 

  28. Etienne AS, Maurer R, Séguinot V (1996) Path integration in mammals and its interaction with visual landmarks. J Exp Biol 199:201–209

    CAS  PubMed  Google Scholar 

  29. Biegler R (2000) Possible uses of path integration in animal navigation. Anim Learn Behav 28:257–277

    Google Scholar 

  30. Parron C, Save E (2004) Evidence for entorhinal and parietal cortices involvement in path integration in the rat. Exp Brain Res 159:349–359

    Article  PubMed  Google Scholar 

  31. Buzsaki G (2005) Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory. Hippocampus 15:827–840

    Article  PubMed  Google Scholar 

  32. Paz-Villagran V, Save E, Poucet B (2006) Spatial discrimination of visually similar environments by hippocampal place cells in the presence of remote recalibrating landmarks. Eur J Neurosci 23:187–195

    Article  CAS  PubMed  Google Scholar 

  33. Werner S, Bock O, Timmann D (2009) The effect of cerebellar cortical degeneration on adaptive plasticity and movement control. Exp Brain Res 193:189–196

    Article  PubMed  Google Scholar 

  34. Shaikh AG, Meng H, Angelaki DE (2004) Multiple reference frames for motion in the primate cerebellum. J Neurosci 24:4491–4497

    Article  CAS  PubMed  Google Scholar 

  35. Yakusheva TA, Shaikh AG, Green AM, Blazquez PM, Dickman JD, Angelaki DE (2007) Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame. Neuron 54:973–985

    Article  CAS  PubMed  Google Scholar 

  36. Yakusheva T, Blazquez PM, Angelaki DE (2008) Frequency-selective coding of translation and tilt in macaque cerebellar nodulus and uvula. J Neurosci 28:9997–10009

    Article  CAS  PubMed  Google Scholar 

  37. Terrace HS, McGonigle BO (1994) Memory and representation of serial order by children, monkeys, and pigeons. Curr Dir Psychol Sci 3:180–189

    Article  Google Scholar 

  38. Macuda T, Roberts WA (1995) Further evidence for hierarchical chunking in rat spatial memory. J Exp Psychol Anim Behav Proc 21:20–32

    Article  CAS  Google Scholar 

  39. Cohen J, Pardy S, Solway H, Graham H (2003) Chunking versus foraging search patterns by rats in the hierarchically baited radial maze. Anim Cogn 6:93–104

    PubMed  Google Scholar 

  40. Schenk F, Contant B, Grobety MC (1990) Angle and directionality affect rat’s organization of visits, sequences and spatial learning in modular mazes. Learn Motiv 21:164–189

    Article  Google Scholar 

  41. Martin LA, Escher T, Goldowitz D, Mittleman G (2004) A relationship between cerebellar Purkinje cells and spatial working memory demonstrated in a lurcher/chimera mouse model system. Genes Brain Behav 3:158–166

    Article  CAS  PubMed  Google Scholar 

  42. Caston J, Chianale C, Mariani J (2004) Spatial memory of heterozygous staggerer (Rora(+)/Rora(sg)) versus normal (Rora(+)/Rora(+)) mice during aging. Behav Genet 34:319–324

    Article  CAS  PubMed  Google Scholar 

  43. Geier CF, Garver KE, Luna B (2007) Circuitry underlying temporally extended spatial working memory. Neuroimage 35:904–915

    Article  PubMed  Google Scholar 

  44. Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44:489–501

    Article  PubMed  Google Scholar 

  45. Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121:561–579

    Article  PubMed  Google Scholar 

  46. Bellebaum C, Daum I (2007) Cerebellar involvement in executive control. Cerebellum 6:184–192

    Article  PubMed  Google Scholar 

  47. Hauser MD (1999) Perseveration, inhibition and the prefrontal cortex: a new look. Curr Opin Neurobiol 9:214–222

    Article  CAS  PubMed  Google Scholar 

  48. McDonald RJ, King AL, Foong N, Rizos Z, Hong NS (2008) Neurotoxic lesions of the medial prefrontal cortex or medial striatum impair multiple-location place learning in the water task: evidence for neural structures with complementary roles in behavioural flexibility. Exp Brain Res 187:419–427

    Article  PubMed  Google Scholar 

  49. Schmahmann JD (2004) Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 16:367–378

    PubMed  Google Scholar 

  50. El-Awar M, Kish S, Oscar-Berman M, Robitaile Y, Schut L, Freedman M (1991) Selective delayed alternation deficits in dominantly inherited olivopontocerebellar atrophy. Brain Cogn 16:121–129

    Article  CAS  PubMed  Google Scholar 

  51. Grafman J, Litvan I, Massaquoi S, Stewart M, Sirigu A, Hallett M (1992) Cognitive planning deficit in patient with cerebellar atrophy. Neurology 42:1493–1496

    CAS  PubMed  Google Scholar 

  52. Apollonio IM, Grafman J, Schwartz MS, Massaquoi S, Hallett M (1993) Memory in patients with cerebellar degeneration. Neurology 43:1536–1544

    Google Scholar 

  53. Schmahmann JD, Sherman JC (1997) Cerebellar cognitive affective syndrome. Int Rev Neurobiol 41:433–440

    Article  CAS  PubMed  Google Scholar 

  54. Bower JM (2002) The organization of cerebellar cortical circuitry revisited: implications for functions. Ann NY Acad Sci 978:135–155

    Article  PubMed  Google Scholar 

  55. Botez-Marquard T, Bard C, Léveillé J, Botez MI (2001) A severe frontal–parietal lobe syndrome following cerebellar damage. Eur J Neurol 8:347–353

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Petrosini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foti, F., Mandolesi, L., Cutuli, D. et al. Cerebellar Damage Loosens the Strategic Use of the Spatial Structure of the Search Space. Cerebellum 9, 29–41 (2010). https://doi.org/10.1007/s12311-009-0134-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-009-0134-4

Keywords

Navigation