Skip to main content
Log in

Plastic Changes in Striatal Fast-Spiking Interneurons Following Hemicerebellectomy and Environmental Enrichment

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Recent findings suggest marked interconnections between the cerebellum and striatum, thus challenging the classical view of their segregated operation in motor control. Therefore, this study was aimed at further investigating this issue by analyzing the effects of hemicerebellectomy (HCb) on density and dendritic length of striatal fast-spiking interneurons (FSi). First, we analyzed the plastic rearrangements of striatal FSi morphology in hemicerebellectomized animals reared in standard conditions. Then, since environmental enrichment (EE) induces structural changes in experimental models of brain disease, we evaluated FSi morphology in lesioned animals exposed to an enriched environment after HCb. Although HCb did not affect FSi density, it progressively shrank dendritic branching of striatal FSi of both sides. These plastic changes, already evident 15 days after the cerebellar ablation, became very marked 30 days after the lesion. Such a relevant effect was completely abolished by postoperative enrichment. EE not only counteracted shrinkage of FSi dendritic arborization but also provoked a progressive increase in dendritic length which surpassed that of the controls as the enrichment period lengthened. These data confirm that the cerebellum and striatum are more interconnected than previously retained. Furthermore, cerebellar damage likely evokes a striatal response through cortical mediation. The EE probably modifies HCb-induced plastic changes in the striatum by increasing the efficiency of the cortical circuitry. This is the first study describing the morphological rearrangement of striatal FSi following a cerebellar lesion; it provides the basis for further studies aimed at investigating the mechanisms underlying cerebello-striatal “talking.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Friston KJ, Frith CD, Passingham RE, Liddle PF, Frackowiak RS. Motor practice and neurophysiological adaptation in the cerebellum: a positron tomography study. Proc Biol Sci. 1992;248:223–8.

    Article  PubMed  CAS  Google Scholar 

  2. Jenkins IH, Brooks DJ, Nixon PD, Frackowiak RS, Passingham RE. Motor sequence learning: a study with positron emission tomography. J Neurosci. 1994;14:3775–90.

    PubMed  CAS  Google Scholar 

  3. Seitz RJ, Canavan AG, Yágüez L, Herzog H, Tellmann L, Knorr U, et al. Successive roles of the cerebellum and premotor cortices in trajectorial learning. Neuroreport. 1994;5:2541–4.

    Article  PubMed  CAS  Google Scholar 

  4. Jueptner M, Frith CD, Brooks DJ, Frackowiak RS, Passingham RE. Anatomy of motor learning. II. Subcortical structures and learning by trial and error. J Neurophysiol. 1997;77:1325–37.

    PubMed  CAS  Google Scholar 

  5. Toni I, Krams M, Turner R, Passingham RE. The time course of changes during motor sequence learning: a whole-brain fMRI study. Neuroimage. 1998;8:50–61.

    Article  PubMed  CAS  Google Scholar 

  6. Laforce Jr R, Doyon J. Distinct contribution of the striatum and cerebellum to motor learning. Brain Cogn. 2001;45:189–211.

    Article  PubMed  Google Scholar 

  7. Laforce Jr R, Doyon J. Differential role for the striatum and cerebellum in response to novel movements using a motor learning paradigm. Neuropsychologia. 2002;40:512–7.

    Article  PubMed  Google Scholar 

  8. Garraux G, McKinney C, Wu T, Kansaku K, Nolte G, Hallett M. Shared brain areas but not functional connections controlling movement timing and order. J Neurosci. 2005;25:5290–7.

    Article  PubMed  CAS  Google Scholar 

  9. Elsinger CL, Harrington DL, Rao SM. From preparation to online control: reappraisal of neural circuitry mediating internally generated and externally guided actions. Neuroimage. 2006;31:1177–87.

    Article  PubMed  CAS  Google Scholar 

  10. Grafton ST. Cortical control of movement. Ann Neurol. 1994;36:3–4.

    Article  PubMed  CAS  Google Scholar 

  11. Middleton FA, Strick PL. Basal-ganglia 'projections' to the prefrontal cortex of the primate. Cereb Cortex. 2002;12:926–35.

    Article  PubMed  Google Scholar 

  12. Ichinohe N, Mori F, Shoumura K. A di-synaptic projection from the lateral cerebellar nucleus to the laterodorsal part of the striatum via the central lateral nucleus of the thalamus in the rat. Brain Res. 2000;880:191–7.

    Article  PubMed  CAS  Google Scholar 

  13. Hoshi E, Tremblay L, Féger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8:1491–3.

    Article  PubMed  CAS  Google Scholar 

  14. Centonze D, Rossi S, De Bartolo P, De Chiara V, Foti F, Musella A, et al. Adaptations of glutamatergic synapses in the striatum contribute to recovery from cerebellar damage. Eur J Neurosci. 2008;27:2188–96.

    Article  PubMed  Google Scholar 

  15. Calabresi P, Mercuri NB, Stefani A, Bernardi G. Synaptic and intrinsic control of membrane excitability of neostriatal neurons. I. An in vivo analysis. J Neurophysiol. 1990;63:651–62.

    PubMed  CAS  Google Scholar 

  16. Kita H. Glutamatergic and GABAergic postsynaptic responses of striatal spiny neurons to intrastriatal and cortical stimulation recorded in slice preparations. Neuroscience. 1996;70:925–40.

    Article  PubMed  CAS  Google Scholar 

  17. Koós T, Tepper JM. Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nat Neurosci. 1999;2:467–72.

    Article  PubMed  Google Scholar 

  18. Yoshida M, Nagatsuka Y, Muramatsu S, Niijima K. Differential roles of the caudate nucleus and putamen in motor behavior of the cat as investigated by local injection of GABA antagonists. Neurosci Res. 1991;10:34–51.

    Article  PubMed  CAS  Google Scholar 

  19. Yamada H, Fujimoto K, Yoshida M. Neuronal mechanism underlying dystonia induced by bicuculline injection into the putamen of the cat. Brain Res. 1995;677:333–6.

    Article  PubMed  CAS  Google Scholar 

  20. Krech D, Rosenzweig MR, Bennett EL. Effects of environmental complexity and training on brain chemistry. J Comp Physiol Psychol. 1960;53:509–19.

    Article  PubMed  CAS  Google Scholar 

  21. Krech D, Rosenzweig MR, Bennett EL. Relations between chemistry and problem-solving among rats raised in enriched and impoverished environments. J Comp Physiol Psychol. 1962;55:801–7.

    Article  PubMed  CAS  Google Scholar 

  22. Diamond MC, Law F, Rhodes H, Lindner B, Rosenzweig MR, Krech D, et al. Increases in cortical depth and glia numbers in rats subjected to enriched environment. J Comp Neurol. 1966;128:117–26.

    Article  PubMed  CAS  Google Scholar 

  23. Rosenzweig MR, Bennett EL, Hebert M, Morimoto H. Social grouping cannot account for cerebral effects of enriched environments. Brain Res. 1978;153:563–76.

    Article  PubMed  CAS  Google Scholar 

  24. Rosenzweig MR, Bennett EL. Psychobiology of plasticity: effects of training and experience on brain and behavior. Behav Brain Res. 1996;78:57–65.

    Article  PubMed  CAS  Google Scholar 

  25. Nithianantharajah J, Hannan AJ. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci. 2006;7:697–709.

    Article  PubMed  CAS  Google Scholar 

  26. Turner CA, Lewis MH, King MA. Environmental enrichment: effects on stereotyped behavior and dendritic morphology. Dev Psychobiol. 2003;43:20–7.

    Article  PubMed  Google Scholar 

  27. Döbrössy MD, Dunnett SB. Environmental enrichment affects striatal graft morphology and functional recovery. Eur J Neurosci. 2004;19:159–68.

    Article  PubMed  Google Scholar 

  28. Faherty CJ, Shepherd KR, Herasimtschuk A, Smeyne RJ. Environmental enrichment in adulthood eliminates neuronal death in experimental Parkinsonism. Mol Brain Res. 2005;134:170–9.

    Article  PubMed  CAS  Google Scholar 

  29. Caston J, Devulder B, Jouen F, Lalonde R, Delhaye-Bouchaud N, Mariani J. Role of an enriched environment on the restoration of behavioral deficits in Lurcher mutant mice. Dev Psychobiol. 1999;35:291–303.

    Article  PubMed  CAS  Google Scholar 

  30. Foti F, Laricchiuta D, Cutuli D, De Bartolo P, Gelfo F, Angelucci F, et al. Exposure to an enriched environment accelerates recovery from cerebellar lesion. Cerebellum. 2011;10:104–19.

    Article  PubMed  Google Scholar 

  31. Gelfo F, Cutuli D, Foti F, Laricchiuta D, De Bartolo P, Caltagirone C, et al. Enriched environment improves motor function and increases neurotrophins in hemicerebellar lesioned rats. Neurorehabil Neural Repair. 2011;25:243–52.

    Article  PubMed  Google Scholar 

  32. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 4th ed. San Diego: Academic; 1998.

    Google Scholar 

  33. Abercrombie M. Estimation of nuclear population from microtome sections. Anat Rec. 1946;94:239–47.

    Article  PubMed  CAS  Google Scholar 

  34. Rudkin TM, Sadikot AF. Thalamic input to parvalbumin immunoreactive GABAergic interneurons: organization in normal striatum and effect of neonatal decortication. Neuroscience. 1999;88:1165–75.

    Article  PubMed  CAS  Google Scholar 

  35. Kawaguchi Y. Neostriatal cell subtypes and their functional roles. Neurosci Res. 1997;27:1–8.

    Article  PubMed  CAS  Google Scholar 

  36. Bolam JP, Hanley JJ, Booth PAC, Bevan MD. Synaptic organization of the basal ganglia. J Anat. 2000;196:527–42.

    Article  PubMed  CAS  Google Scholar 

  37. Ramanathan S, Hanley JJ, Deniau J-M, Bolam JP. Synaptic convergence of motor and somatosensory cortical afferents onto GABAergic interneuron’s in the rat striatum. J Neurosci. 2002;22:8158–69.

    PubMed  CAS  Google Scholar 

  38. Tepper JM, Bolam JP. Functional diversity and specificity of neostriatal interneurons. Curr Opin Neurobiol. 2004;14:685–92.

    Article  PubMed  CAS  Google Scholar 

  39. Wellman CL, Sengelaub DR. Alteration in dendritic morphology of frontal cortical neurones after basal forebrain lesions in adult and aged rats. Brain Res. 1995;669:48–58.

    Article  PubMed  CAS  Google Scholar 

  40. Works SJ, Wilson RE, Wellman CL. Age-dependent effect of cholinergic lesion on dendritic morphology in rat frontal cortex. Neurobiol Aging. 2004;25:963–74.

    Article  PubMed  CAS  Google Scholar 

  41. Olney JW. Brain lesions obesity and other disturbances in mice treated with monosodium glutamate. Science. 1969;164:719–21.

    Article  PubMed  CAS  Google Scholar 

  42. Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-d-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci USA. 1995;92:7162–6.

    Article  PubMed  CAS  Google Scholar 

  43. Bindokas VP, Miller RJ. Excitotoxic degeneration is initiated at non-random sites in cultured rat cerebellar neurons. J Neurosci. 1995;15:6999–7011.

    PubMed  CAS  Google Scholar 

  44. Greenwood SM, Mizielinska SM, Frenguelli BG, Harvey J, Connolly CN. Mitochondrial dysfunction and dendritic beading during neuronal toxicity. J Biol Chem. 2007;282:26235–44.

    Article  PubMed  CAS  Google Scholar 

  45. Paban V, Jaffard M, Chambon C, Malafosse M, Alescio-Lautier B. Time course of behavioral changes following basal forebrain cholinergic damage in rats: environmental enrichment as a therapeutic intervention. Neuroscience. 2005;132:13–32.

    Article  PubMed  CAS  Google Scholar 

  46. Petrosini L, De Bartolo P, Foti F, Gelfo F, Cutuli D, Leggio MG, et al. On whether the environmental enrichment may provide cognitive and brain reserves. Brain Res Rev. 2009;61:221–39.

    Article  PubMed  Google Scholar 

  47. Leggio MG, Mandolesi L, Federico F, Spirito F, Ricci B, Gelfo F, et al. Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat. Behav Brain Res. 2005;163:78–90.

    Article  PubMed  Google Scholar 

  48. Gelfo F, De Bartolo P, Giovine A, Petrosini L, Leggio MG. Layer and regional effects of environmental enrichment on the pyramidal neuron morphology of the rat. Neurobiol Learn Mem. 2009;91:353–65.

    Article  PubMed  Google Scholar 

  49. Mandolesi L, De Bartolo P, Foti F, Gelfo F, Federico F, Leggio MG, et al. Environmental enrichment provides a cognitive reserve to be spent in the case of brain lesion. J Alzheimers Dis. 2008;15:11–28.

    PubMed  Google Scholar 

Download references

Conflict of Interest

All the authors have approved the manuscript that is enclosed and fully disclose all conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola De Bartolo.

Additional information

Paola De Bartolo and Francesca Gelfo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Bartolo, P., Gelfo, F., Burello, L. et al. Plastic Changes in Striatal Fast-Spiking Interneurons Following Hemicerebellectomy and Environmental Enrichment. Cerebellum 10, 624–632 (2011). https://doi.org/10.1007/s12311-011-0275-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-011-0275-0

Keywords

Navigation