Skip to main content
Log in

The Recognition of Facial Emotions in Spinocerebellar Ataxia Patients

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Patients with cerebellar lesions present some affective and cognitive disorders, defining a peculiar pattern of cognitive impairment, so-called cerebellar cognitive affective syndrome. This pattern has been confirmed in many genotypes of spinocerebellar ataxias (SCA), a group of genetically defined pathologies characterized by the degeneration of the cerebellum and its connections. Recently, in SCA patients, some authors focused the interest on social cognition evidencing an impairment of theory of mind and basic emotion recognition by verbal material. The recognition of emotions in faces is an essential component of social cognition; therefore, we assessed this ability in SCA patients, expanding the study from the basic verbal emotions to the basic and social visual emotion recognition. We assessed facial emotion recognition using two basic and social emotion tasks in a group of SCA patients together with a complete clinical and neuropsychological evaluation. We compared results with the performance of a control group. We demonstrated a significant difference between patients and controls both in basic and social emotion recognition, although we found a specific impairment only for social emotions. The deficit was not correlated to clinical and demographic features. The cognitive and psychological profile did not explain the impairment in emotion recognition. This result supports the hypothesis that the impairment in social emotion recognition could be specifically related to a defect in the corticocerebellar network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bruce V, Young A. Understanding face recognition. Br J Psychol. 1986;77(Pt 3):305–27.

    Article  PubMed  Google Scholar 

  2. Duchaine BC, Parker H, Nakayama K. Normal recognition of emotion in a prosopagnosic. Perception. 2003;32(7):827–38.

    Article  PubMed  Google Scholar 

  3. Hobson RP, Ouston J, Lee A. What’s in a face? The case of autism. Br J Psychol. 1988;79(Pt 4):441–53.

    Article  PubMed  Google Scholar 

  4. Vuilleumier P, Pourtois G. Distributed and interactive brain mechanisms during emotion face perception: evidence from functional neuroimaging. Neuropsychologia. 2007;45(1):174–94.

    Article  PubMed  Google Scholar 

  5. Barrett LF, Bar M. See it with feeling: affective predictions during object perception. Philos Trans R Soc Lond B Biol Sci. 2009;364(1521):1325–34.

    Article  PubMed  CAS  Google Scholar 

  6. Adolphs R. Neural systems for recognizing emotion. Curr Opin Neurobiol. 2002;12(2):169–77.

    Article  PubMed  CAS  Google Scholar 

  7. Kesler-West ML, Andersen AH, Smith CD, Avison MJ, Davis CE, Kryscio RJ, et al. Neural substrates of facial emotion processing using fMRI. Brain Res Cogn Brain Res. 2001;11(2):213–26.

    Article  PubMed  CAS  Google Scholar 

  8. Vuilleumier P, Driver J. Modulation of visual processing by attention and emotion: windows on causal interactions between human brain regions Phil. Trans R Soc B. 2007;362:837–55.

    Article  Google Scholar 

  9. LeDoux JE. Emotion circuits in the brain. Annu Rev Neurosci. 2000;23:155–84.

    Article  PubMed  CAS  Google Scholar 

  10. Vuilleumier P, Armony JL, Driver J, Dolan RJ. Effects of attention and emotion on face processing in the human brain: an event-related fMRI study. Neuron. 2001;30:829–41.

    Article  PubMed  CAS  Google Scholar 

  11. Mier D, Lis S, Neuthe K, Sauer C, Esslinger C, Gallhofer B, et al. The involvement of emotion recognition in affective theory of mind. Psychophysiology. 2010;47(6):1028–39.

    PubMed  Google Scholar 

  12. Zaja RH, Rojahn J. Facial emotion recognition in intellectual disabilities. Curr Opin Psychiatry. 2008;21(5):441–4.

    Article  PubMed  Google Scholar 

  13. Harms MB, Martin A, Wallace GL. Facial emotion recognition in autism spectrum disorders: a review of behavioral and neuroimaging studies. Neuropsychol Rev. 2010;20(3):290–322.

    Article  PubMed  Google Scholar 

  14. Courchesne E. Brainstem, cerebellar and limbic neuroanatomical abnormalities in autism. Curr Opin Neurobiol. 1997;7(2):269–78.

    Article  PubMed  CAS  Google Scholar 

  15. Chugani DC, Muzik O, Rothermel R, Behen M, Chakraborty P, Mangner T, et al. Altered serotonin synthesis in the dentatothalamocortical pathway in autistic boys. Ann Neurol. 1997;42(4):666–9.

    Article  PubMed  CAS  Google Scholar 

  16. Fusar-Poli P, Placentino A, Carletti F, Landi P, Allen P, Surguladze S, et al. Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. J Psychiatry Neurosci. 2009;34(6):418–32.

    PubMed  Google Scholar 

  17. Turner BM, Paradiso S, Marvel CL, Pierson R, Boles Ponto LL, Hichwa RD, et al. The cerebellum and emotional experience. Neuropsychologia. 2007;45(6):1331–41.

    Article  PubMed  Google Scholar 

  18. Schutter DJ, Enter D, Hoppenbrouwers SS. High-frequency repetitive transcranial magnetic stimulation to the cerebellum and implicit processing of happy facial expressions. J Psychiatry Neurosci. 2009;34(1):60–5.

    PubMed  Google Scholar 

  19. Burk K, Globas C, Bosch S, Klockgether T, Zuhlke C, Daum I, et al. Cognitive deficits in spinocerebellar ataxia type 1, 2, and 3. J Neurol. 2003;250(2):207–11.

    Article  PubMed  CAS  Google Scholar 

  20. Le Pira F, Zappala G, Saponara R, Domina E, Restivo D, Reggio E, et al. Cognitive findings in spinocerebellar ataxia type 2: relationship to genetic and clinical variables. J Neurol Sci. 2002;201(1–2):53–7.

    Article  PubMed  Google Scholar 

  21. Suenaga M, Kawai Y, Watanabe H, Atsuta N, Ito M, Tanaka F, et al. Cognitive impairment in spinocerebellar ataxia type 6. J Neurol Neurosurg Psychiatry. 2008;79(5):496–9.

    Article  PubMed  CAS  Google Scholar 

  22. Stone J, Smith L, Watt K, Barron L, Zeman A. Incoordinated thought and emotion in spinocerebellar ataxia type 8. J Neurol. 2001;248(3):229–32.

    Article  PubMed  CAS  Google Scholar 

  23. Torrens L, Burns E, Stone J, Graham C, Wright H, Summers D, et al. Spinocerebellar ataxia type 8 in Scotland: frequency, neurological, neuropsychological and neuropsychiatric findings. Acta Neurol Scand. 2008;117(1):41–8.

    Article  PubMed  CAS  Google Scholar 

  24. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4):561–79.

    Article  PubMed  Google Scholar 

  25. Garrard P, Martin NH, Giunti P, Cipolotti L. Cognitive and social cognitive functioning in spinocerebellar ataxia: a preliminary characterization. J Neurol. 2008;255(3):398–405.

    Article  PubMed  CAS  Google Scholar 

  26. Sokolovsky N, Cook A, Hunt H, Giunti P, Cipolotti L. A preliminary characterisation of cognition and social cognition in spinocerebellar ataxia types 2, 1, and 7. Behav Neurol. 2010;23(1–2):17–29.

    PubMed  CAS  Google Scholar 

  27. Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, et al. International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci. 1997;145(2):205–11.

    Article  PubMed  CAS  Google Scholar 

  28. Ekman P, Friesen WV. Constants across cultures in the face and emotion. J Pers Soc Psychol. 1971;17(2):124–9.

    Article  PubMed  CAS  Google Scholar 

  29. Tamietto M, Adenzato M, Geminiani G, de Gelder B. Fast recognition of social emotions takes the whole brain: interhemispheric cooperation in the absence of cerebral asymmetry. Neuropsychologia. 2007;45(4):836–43.

    Article  PubMed  Google Scholar 

  30. Folstein MF, Folstein SE, McHugh PR. Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.

    Article  PubMed  CAS  Google Scholar 

  31. Giovagnoli AR, Del Pesce M, Mascheroni S, Simoncelli M, Laiacona M, Capitani E. Trail making test: normative values from 287 normal adult controls. Ital J Neurol Sci. 1996;17(4):305–9.

    Article  PubMed  CAS  Google Scholar 

  32. Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychol. 1935;18:643–62.

    Article  Google Scholar 

  33. Buschke H, Fuld PA. Evaluating storage, retention, and retrieval in disordered memory and learning. Neurology. 1974;24(11):1019–25.

    PubMed  CAS  Google Scholar 

  34. Benton AL. A visual retention test for clinical use. AMA Arch Neurol Psychiatry. 1945;54:212–6.

    CAS  Google Scholar 

  35. Shallice T. Specific impairments of planning. Philos Trans R Soc Lond B Biol Sci. 1982;298(1089):199–209.

    Article  PubMed  CAS  Google Scholar 

  36. Heaton RK, Chelune GJ, Talley JL, Kay GG, Curtiss G, Wisconsin Card Sorting Test. ed. Florence: Organizzazioni Speciali; 2000.

  37. Novelli G, Papagno C, Capitani E, Laiacona M, Cappa SF, Vallar G. Tre test clinici di ricerca e produzione lessicale. Taratura su soggetti normali. Arch Psicol Neurol Psichiatr. 1986;47(4):477–506.

    Google Scholar 

  38. Benton A, Sivan A, Hamsher K, Varney N, Spreen O, Contributi per un assessment neuropsicologico. ed. Florence:Organizzazioni Speciali; 2000.

  39. Zung WW. A Self-Rating Depression Scale. Arch Gen Psychiatry. 1965;12:63–70.

    PubMed  CAS  Google Scholar 

  40. Spielberger CD, Manual for the state/trait anxiety inventory (form Y): (self evaluation questionnaire). ed. Palo Alto: Consulting Psychologists Press; 1983.

  41. Finner H. Some new inequalities for the RAND distribution with application to the determination of optimum significance levels of multiple range tests. J Am Stat Assoc. 1990;85:191–4.

    Article  Google Scholar 

  42. Finner H. On a monotonicity problem in step-down multiple test procedures. J Am Stat Assoc. 1993;88:920–3.

    Article  Google Scholar 

  43. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res. 2001;125(1–2):279–84.

    Article  PubMed  CAS  Google Scholar 

  44. Adolphs R, Tranel D, Damasio AR. Dissociable neural systems for recognizing emotions. Brain Cogn. 2003;52:61–9.

    Article  PubMed  Google Scholar 

  45. Adolphs R, Tranel D, Damasio H, Damasio A. Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature. 1994;372:669–72.

    Article  PubMed  CAS  Google Scholar 

  46. Orsi L, D’Agata F, Caroppo P, Franco A, Caglio M, Avidano F, et al. Neuropsychological pictures of 33 spinocerebellar ataxia cases. J Clin Exp Neuropsychol. 2011;6:1–11.

    Google Scholar 

  47. Klinke I, Minnerop M, Schmitz-Hubsch T, Hendriks M, Klockgether T, Wullner U, et al. Neuropsychological features of patients with spinocerebellar ataxia (SCA) types 1, 2, 3, and 6. Cerebellum. 2010;9(3):433–42.

    Article  PubMed  Google Scholar 

  48. Le Pira F, Giuffrida S, Maci T, Marturano L, Tarantello R, Zappala G, et al. Dissociation between motor and cognitive impairments in SCA2: evidence from a follow-up study. J Neurol. 2007;254(10):1455–6.

    Article  PubMed  Google Scholar 

  49. Timmann D, Drepper J, Frings M, Maschke M, Richter S, Gerwig M, et al. The human cerebellum contributes to motor, emotional and cognitive associative learning. A review. Cortex. 2009;46(7):845–57.

    Article  PubMed  Google Scholar 

  50. Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29(26):8586–94.

    Article  PubMed  CAS  Google Scholar 

  51. Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9(4):304–13.

    Article  PubMed  CAS  Google Scholar 

  52. Nomura M, Iidaka T, Kakehi K, Tsukiura T, Hasegawa T, Maeda Y, et al. Frontal lobe networks for effective processing of ambiguously expressed emotions in humans. Neurosci Lett. 2003;348(2):113–6.

    Article  PubMed  CAS  Google Scholar 

  53. Estrada R, Galarraga J, Orozco G, Nodarse A, Auburger G. Spinocerebellar ataxia 2 (SCA2): morphometric analyses in 11 autopsies. Acta Neuropathol. 1999;97(3):306–10.

    Article  PubMed  CAS  Google Scholar 

  54. Manto MU. The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum. 2005;4(1):2–6.

    Article  PubMed  CAS  Google Scholar 

  55. van Wingen GA, van Eijndhoven P, Tendolkar I, Buitelaar J, Verkes RJ, Fernandez G. Neural basis of emotion recognition deficits in first-episode major depression. Psychol Med. 2010;8:1–9.

    Google Scholar 

  56. Lenth RV. Some practical guidelines for effective sample size determination. Am Stat. 2001;55:187–93.

    Article  Google Scholar 

  57. Cohen J. A power primer. Psychol Bull. 1992;112:155–9.

    Article  PubMed  CAS  Google Scholar 

  58. de Gelder B, Meeren HK, Righart R, van den Stock J, van de Riet WA, Tamietto M. Beyond the face: exploring rapid influences of context on face processing. Prog Brain Res. 2006;155:37–48.

    Article  PubMed  Google Scholar 

  59. Barrett LF, Lindquist KA, Gendron M. Language as context for the perception of emotion. Trends Cogn Sci. 2007;11:327–32.

    Article  PubMed  Google Scholar 

  60. Carroll JM, Russell JA. Do facial expressions signal specific emotions? Judging emotion from the face in context. J Pers Soc Psychol. 1996;70:205–18.

    Article  PubMed  CAS  Google Scholar 

  61. Aviezer H, Hassin RR, Ryan J, Grady C, Susskind J, Anderson A, et al. Angry, disgusted, or afraid? Studies on the malleability of emotion perception. Psychol Sci. 2008;19:724–32.

    Article  PubMed  Google Scholar 

  62. Tamietto M, de Gelder B. Affective blindsight in the intact brain: Neural interhemispheric summation for unseen fearful expressions. Neuropsychologia. 2008;46(3):820–8.

    Article  PubMed  Google Scholar 

  63. Tamietto M, Latini Corazzini L, de Gelder B, Geminiani G. Functional asymmetry and interhemispheric cooperation in the perception of emotions from facial expressions. Experimental Brain Research. 2006;171(3):389–404.

    Article  Google Scholar 

  64. Bar M. Visual objects in context. Nat Rev Neurosci. 2004;5(8):617–29.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr. Federica Avidano, Dr. Cristina Manzone and Dr. Chiara Caroppo for their contributions to this work. This research was supported by Compagnia di San Paolo, “Cervelletto e cognitività”, 2005–2006. The authors would also like to thank patients who participated in the study and their families.

Conflict of Interests

Authors declare no financial or personal conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico D’Agata.

Additional information

Federico D’Agata and Paola Caroppo contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM1 (PDF 197 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Agata, F., Caroppo, P., Baudino, B. et al. The Recognition of Facial Emotions in Spinocerebellar Ataxia Patients. Cerebellum 10, 600–610 (2011). https://doi.org/10.1007/s12311-011-0276-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-011-0276-z

Keywords

Navigation