Skip to main content
Log in

Cerebellar Zones: History, Development, and Function

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The longitudinal and transverse zonal arrangement of axonal projections to and from the cerebellum, even more than the well-known laminar cytoarchitecture, is the hallmark of cerebellar anatomy. No model of cerebellar function, whether in motor control, cognition, or emotion, will be complete without understanding the development and function of zones. To this end, a special issue of this journal is dedicated to zones, and the purpose of this article is to summarize the research and review articles that are contained within. The special issue begins by considering some of the very first studies in the 1960s and 1970s that led to our modern understanding of this unique and defining anatomical substructure. Then, it considers the molecular analogs of longitudinal zones in the form of stripes in the cerebellar cortex and related sub-areas in the deep cerebellar nuclei, and it includes studies on the genetic underpinnings of stripes and zones. Several articles address the evolution of both embryonic clusters and adult zones across vertebrate species, and others discuss the functional and clinical relevance of zones. While we do not yet fully understand the role of zones with respect to motor behavior in all of its complexities, cerebellar function is clearly modular, and combinatorial models of complex motor movements based on multi-purpose modules are beginning to emerge. This special issue, by refocusing attention on this fundamental organization of the cerebellum, sets the stage for future studies that will more fully reveal the cellular, developmental, behavioral, and clinical relevance of zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Alisky JM, Tolbert DL. Quantitative analysis of converging spinal and cuneate mossy fibre afferent projections to the rat cerebellar anterior lobe. Neuroscience. 1997;80:373–88.

    Article  PubMed  CAS  Google Scholar 

  2. Armstrong CL, Duffin CA, McFarland R, Vogel MW. Mechanisms of compartmental Purkinje cell death and survival in the Lurcher mutant mouse. Cerebellum. 2011;10. this issue.

  3. Arsenio Nunes ML, Sotelo C. Development of the spinocerebellar system in the postnatal rat. J Comp Neurol. 1985;237:291–306.

    Article  PubMed  CAS  Google Scholar 

  4. Baader SL, Vogel MW, Sanlioglu S, Zhang X, Oberdick J. Selective disruption of “late onset” sagittal banding patterns by ectopic expression of engrailed-2 in cerebellar Purkinje cells. J Neurosci. 1999;19:5370–9.

    PubMed  CAS  Google Scholar 

  5. Blatt GJ, Eisenman LM. A qualitative and quantitative light microscopic study of the inferior olivary complex of normal, reeler, and weaver mutant mice. J Comp Neurol. 1985;232:117–28.

    Article  PubMed  CAS  Google Scholar 

  6. Blatt GJ, Eisenman LM. A qualitative and quantitative light microscopic study of the inferior olivary complex in the adult staggerer mutant mouse. J Neurogenet. 1985;2:51–66.

    Article  PubMed  CAS  Google Scholar 

  7. Blatt GJ, Eisenman LM. Topographic and zonal organization of the olivocerebellar projection in the reeler mutant mouse. J Comp Neurol. 1988;267:603–15.

    Article  PubMed  CAS  Google Scholar 

  8. Blatt GJ, Eisenman LM. The olivocerebellar projection in normal (+/+), heterozygous weaver (wv/+), and homozygous weaver (wv/wv) mutant mice: comparison of terminal pattern and topographic organization. Exp Brain Res. 1993;95:187–201.

    Article  PubMed  CAS  Google Scholar 

  9. Cerminara NL, Apps R. Behavioral significance of cerebellar modules. Cerebellum. 2011;10. This issue.

  10. Chambers WW, Sprague JM. Functional localization in the cerebellum. I. Organization in longitudinal cortico-nuclear zones and their contribution to the control of posture, both extrapyramidal and pyramidal. J Comp Neurol. 1955;103:105–29.

    Article  PubMed  CAS  Google Scholar 

  11. Chambers WW, Sprague JM. Functional localization in the cerebellum. II. Somatotopic organization in cortex and nuclei. AMA Arch Neurol Psychiatry. 1955;74:653–80.

    PubMed  CAS  Google Scholar 

  12. Demilly A, Reeber SL, Gebre SA, Sillitoe RV. Neurofilament heavy chain expression reveals a unique parasagittal stripe topography in the mouse cerebellum. Cerebellum. 2011;10. this issue.

  13. Demitras-Tatlidede A, Freitas C, Pascual-Leone A, Schmahmann JD. Modulatory effects of theta burst stimulation on cerebellar nonsomatic functions. Cerebellum. 2011;10. this issue.

  14. Eisenman LM. Histochemical localization of 5′-nucleotidase in the reeler mutant mouse. Neurosci Lett. 1988;94:70–5.

    Article  PubMed  CAS  Google Scholar 

  15. Eisenman LM. Ethanol and vestibular stimulation reveal simple and complex aspects of cerebellar heterogeneity. Cerebellum. 2011;10. this issue.

  16. Eisenman LM, Arlinghaus LE. Spinocerebellar projection in the meander tail mutant mouse: organization in the granular posterior lobe and the agranular anterior lobe. Brain Res. 1991;558:149–52.

    Article  PubMed  CAS  Google Scholar 

  17. Eisenman LM, Hawkes R. 5′-Nucleotidase and the mabQ113 antigen share a common distribution in the cerebellar cortex of the mouse. Neuroscience. 1989;31(1):231–5.

    Article  PubMed  CAS  Google Scholar 

  18. Eisenman LM, Pruett Jr JR. Expression of the Purkinje cell specific zebrin antigens in the cerebellum of the meander tail mutant mouse. Brain Res. 1992;589:135–8.

    Article  PubMed  CAS  Google Scholar 

  19. Eisenman LM, Schalekamp MP, Voogd J. Development of the cerebellar cortical efferent projection: an in-vitro anterograde tracing study in rat brain slices. Brain Res Dev Brain Res. 1991;60:261–6.

    Article  PubMed  CAS  Google Scholar 

  20. Eisenman LM, Scott Donovan H. The ventral uvula of the mouse cerebellum: a neural target of ethanol and vestibular stimuli. Brain Res. 2004;1028:243–8.

    Article  PubMed  CAS  Google Scholar 

  21. Haines DE. Zones in the cerebellar cortex: recollections of one participant in the unfolding story. Cerebellum. 2011;10. this issue.

  22. Haines DE, Manto M. Cerebellar Classics VI. The saga of zones in the cerebellar cortex as reflected in the corticonuclear system: Prologue (1897–1929). Cerebellum. 2010;9:461–83.

    Article  Google Scholar 

  23. Haines DE, Manto M. Cerebellar Classics VII. The saga of zones in the cerebellar cortex as reflected in the corticonuclear system: A significant next step (Jansen and Brodal, 1940). Cerebellum. 2011;10:124–83.

    Article  PubMed  Google Scholar 

  24. Haines DE, Manto M. Cerebellar Classics VIII. The saga of zones in the cerebellar cortex as reflected in the corticonuclear system: A different approach, a specific hypothesis, and the proof begins (Voogd, 1969).. 2011;10. this issue.

  25. Heckroth JA, Eisenman LM. Parasagittal organization of mossy fiber collaterals in the cerebellum of the mouse. J Comp Neurol. 1988;270:385–94.

    Article  PubMed  CAS  Google Scholar 

  26. Jankowski J, Miething A, Schilling K, Baader SL. Physiological purkinje cell death is spatiotemporally organized in the developing mouse cerebellum. Cerebellum. 2009;8:277–90.

    Article  PubMed  Google Scholar 

  27. Jankowski J, Miething A, Schilling K, Oberdick J, Baader S. Cell death as a regulator of cerebellar histogenesis and compartmentation. Cerebellum. 2011;10. this issue.

  28. Ji Z, Hawkes R. Topography of Purkinje cell compartments and mossy fiber terminal fields in lobules II and III of the rat cerebellar cortex: spinocerebellar and cuneocerebellar projections. Neuroscience. 1994;61:935–54.

    Article  PubMed  CAS  Google Scholar 

  29. Ji Z, Jin Q, Vogel MW. Evidence of spinocerebellar mossy fiber segregation in the juvenile staggerer cerebellum. J Comp Neurol. 1997;378:354–62.

    Article  PubMed  CAS  Google Scholar 

  30. Kuemerle B, Zanjani H, Joyner A, Herrup K. Pattern deformities and cell loss in Engrailed-2 mutant mice suggest two separate patterning events during cerebellar development. J Neurosci. 1997;17:7881–9.

    PubMed  CAS  Google Scholar 

  31. Maklad A, Fritzsch B. Partial segregation of posterior crista and saccular fibers to the nodulus and uvula of the cerebellum in mice, and its development. Brain Res Dev Brain Res. 2003;140:223–36.

    Article  PubMed  CAS  Google Scholar 

  32. Marzban H, Hawkes R. On the architecture of the posterior zone of the cerebellum. Cerebellum. 2011;10. this issue.

  33. Marzban H, Hoy N, Aavani T, Sarko DK, Catania KC, Hawkes R. Compartmentation of the cerebellar cortex in the naked mole-rat (Heterocephalus glaber). Cerebellum. 2011;10. this issue.

  34. Neudert F, Redies C. Neural circuits revealed by axon tracing and mapping cadherin expression in the embryonic chicken cerebellum. J Comp Neurol. 2008;509:283–301.

    Article  PubMed  Google Scholar 

  35. Paradies MA, Grishkat H, Smeyne RJ, Oberdick J, Morgan JI, Eisenman LM. Correspondence between L7-lacZ-expressing Purkinje cells and labeled olivocerebellar fibers during late embryogenesis in the mouse. J Comp Neurol. 1996;374:451–66.

    Article  PubMed  CAS  Google Scholar 

  36. Redies C, Neudert F, Lin J. Cadherins in cerebellar development: translation of embryonic patterning into mature functional compartmentalization. Cerebellum. 2011;10. this issue.

  37. Ruigrok T. The ins and outs of cerebellar modules. Cerebellum. 2011;10. this issue.

  38. Sarna JR, Hawkes R. Patterned Purkinje cell death in the cerebellum. Prog Neurobiol. 2003;70:473–507.

    Article  PubMed  CAS  Google Scholar 

  39. Sarna JR, Larouche M, Marzban H, Sillitoe RV, Rancourt DE, Hawkes R. Patterned Purkinje cell degeneration in mouse models of Niemann-Pick type C disease. J Comp Neurol. 2003;456:279–91.

    Article  PubMed  Google Scholar 

  40. Serapide MF, Panto MR, Parenti R, Zappala A, Cicirata F. Multiple zonal projections of the basilar pontine nuclei to the cerebellar cortex of the rat. J Comp Neurol. 2001;430:471–84.

    Article  PubMed  CAS  Google Scholar 

  41. Sgaier SK, Millet S, Villanueva MP, Berenshteyn F, Song C, Joyner AL. Morphogenetic and cellular movements that shape the mouse cerebellum; insights from genetic fate mapping. Neuron. 2005;45:27–40.

    PubMed  CAS  Google Scholar 

  42. Sillitoe RV, Vogel MW, Joyner AL. Engrailed homeobox genes regulate establishment of the cerebellar afferent circuit map. J Neurosci. 2010;30:10015–24.

    Article  PubMed  CAS  Google Scholar 

  43. Simpson JI. Crossing zones in the vestibulocerebellum. Cerebellum. 2011;10. this issue.

  44. Sotelo C. Cellular and genetic regulation of the development of the cerebellar system. Prog Neurobiol. 2004;72:295–339.

    Article  PubMed  CAS  Google Scholar 

  45. Sugihara I, Wu HS, Shinoda Y. The entire trajectories of single olivocerebellar axons in the cerebellar cortex and their contribution to cerebellar compartmentalization. J Neurosci. 2001;21:7715–23.

    PubMed  CAS  Google Scholar 

  46. Sugihara I. Compartmentalization of the deep cerebellar nuclei based on afferent projections and aldolase C expression. Cerebellum. 2011;10. this issue.

  47. Van der Steen J, Simpson JI, Tan J. Functional and anatomic organization of three-dimensional eye movements in rabbit cerebellar flocculus. J Neurophysiol. 1994;72:31–46.

    PubMed  Google Scholar 

  48. Vig J, Goldowitz D, Steindler DA, Eisenman LM. Compartmentation of the reeler cerebellum: segregation and overlap of spinocerebellar and secondary vestibulocerebellar fibers and their target cells. Neuroscience. 2005;130:735–44.

    Article  PubMed  CAS  Google Scholar 

  49. Voogd J. The importance of fiber connections in the comparative anatomy of the mammalian cerebellum. In: Llinas R, editor. Neurobiology of cerebellar evolution and development. Chcago: AMA-ERF Institute for Biomedical Research; 1969. p. 493–514.

    Google Scholar 

  50. Voogd J. Cerebellar zones: a personal history. Cerebellum. 2011;10. this issue.

  51. Wilson SL, Kalinovsky A, Orvis GD, Joyner AL. Spatially restricted and developmentally dynamic expression of Engrailed genes in multiple cerebellar cell types. Cerebellum 2011;10. this issue.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John Oberdick or Roy V. Sillitoe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oberdick, J., Sillitoe, R.V. Cerebellar Zones: History, Development, and Function. Cerebellum 10, 301–306 (2011). https://doi.org/10.1007/s12311-011-0306-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-011-0306-x

Keywords

Navigation