Skip to main content
Log in

The postoperative brain tumour stem cell (BTSC) niche and cancer recurrence

  • Review
  • Published:
Advances in Therapy Aims and scope Submit manuscript

Abstract

Currently, surgical resection is one of only a few options for treating brain cancer. Unfortunately, postoperative tumour recurrence remains almost inevitable despite additional radiation or chemotherapy treatment following resection. Clinical observations and a growing body of experimental evidence have led to speculation that there is a population of persistent brain tumour stem cells (BTSCs) — or brain tumour initiating cells — that are difficult to completely remove surgically. Furthermore, residual BTSCs following surgery may actually be more resistant to subsequent radiation and/or chemotherapies. It remains to be determined if brain surgeries render the postoperative tissue microenvironment more favourable for the survival and growth of BTSCs, and therefore the recurrence of brain tumours.

We hypothesise that BTSC-based tumour recurrence may develop within a specific niche of the aberrant tumour microenvironment. Even when the gross appearance of the primary tumour seems confined, BTSCs (albeit accounting only for a small population of tumour cells) may microscopically enter the stroma, hampering curative surgeries. This article discusses the theory that surgical resection of brain tumours generates niches recruiting BTSCs to the surgical wounds, stimulating the proliferation and invasiveness of BTSCs, and leading to tumour recurrence. Postoperative brains are marked with active wound repair in peritumoural margins, which is likely to be accompanied by increased inflammatory paracrine production, angiogenesis and reactive astrogliosis. The postoperative BTSC niche concept is consistent with the observation that brain tumour recurrence usually occurs in tissues that are proximal to the resection margin. In this article, we intend to reflect recent advances that may lead to novel strategies to eliminate postoperative brain tumour recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gonzalez J, Gilbert MR. Treatment of astrocytomas. Curr Opin Neurol. 2005;18:632–638.

    Article  PubMed  CAS  Google Scholar 

  2. Hentschel SJ, Lang FF. Current surgical management of glioblastoma. Cancer J. 2003;9:113–125.

    Article  PubMed  Google Scholar 

  3. Harbaugh KS, Black PM. Strategies in the surgical management of malignant gliomas. Semin Surg Oncol. 1998;14:26–33.

    Article  PubMed  CAS  Google Scholar 

  4. Olson JJ. Neurosurgical advances in the treatment of brain tumors. Curr Oncol Rep. 2000;2:434–437.

    Article  PubMed  CAS  Google Scholar 

  5. Toms SA, Ferson DZ, Sawaya R. Basic surgical techniques in the resection of malignant gliomas. J Neuro Oncol. 1999;42:215–226.

    Article  CAS  Google Scholar 

  6. Wallner KE, Galicich JH, Krol G, Arbit E, Malkin MG. Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int J Radiat Oncol Biol Phys. 1989;16:1405–1409.

    PubMed  CAS  Google Scholar 

  7. Sneed PK, Gutin PH, Larson DA, et al. Patterns of recurrence of glioblastoma multiforme after external irradiation followed by implant boost. Int J Radiat Oncol Biol Phys. 1994;29:719–727.

    PubMed  CAS  Google Scholar 

  8. Aydin H, Sillenberg I, von Lieven H. Patterns of failure following CT-based 3-D irradiation for malignant glioma. Strahlenther Onkol. 2001;177:424–431.

    Article  PubMed  CAS  Google Scholar 

  9. Burger PC, Dubois PJ, Schold SC Jr, et al. Computerized tomographic and pathologic studies of the untreated, quiescent, and recurrent glioblastoma multiforme. J Neurosurg. 1983;58:159–169.

    PubMed  CAS  Google Scholar 

  10. Gaspar LE, Fisher BJ, Macdonald DR, et al. Supratentorial malignant glioma: patterns of recurrence and implications for external beam local treatment. Int J Radiat Oncol Biol Phys. 1992;24:55–57.

    PubMed  CAS  Google Scholar 

  11. Mitchell P, Ellison DW, Mendelow AD. Surgery for malignant gliomas: mechanistic reasoning and slippery statistics. Lancet Neurol. 2005;4:413–422.

    Article  PubMed  Google Scholar 

  12. Matsukado Y, MacCarty CS, Kernohan JW. The growth of glioblastoma multiforme (astrocytomas, grades 3 and 4) in neurosurgical practice. J Neurosurg. 1961;18:636–644.

    PubMed  CAS  Google Scholar 

  13. Kelly PJ, Daumas-Duport C, Kispert DB, Kall BA, Scheithauer BW, Illig JJ. Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J Neurosurg. 1987;66:865–874.

    PubMed  CAS  Google Scholar 

  14. Brower V. Search and destroy: recent research exploits adult stem cells’ attraction to cancer. J Natl Cancer Inst. 2005;97:414–416.

    Article  PubMed  Google Scholar 

  15. Burger PC, Heinz ER, Shibata T, Kleihues P. Topographic anatomy and CT correlations in the untreated glioblastoma multiforme. J Neurosurg. 1988;68:698–704.

    Article  PubMed  CAS  Google Scholar 

  16. Giese A, Bjerkvig R, Berens ME, Westphal M. Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol. 2003;21:1624–1636.

    Article  PubMed  CAS  Google Scholar 

  17. Calabrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stem cells. Cancer Cell. 2007;11:69–82.

    Article  PubMed  CAS  Google Scholar 

  18. Yang ZJ. Wechsler-Reya RJ. Hit ‚em where they live: targeting the cancer stem cell niche. Cancer Cell. 2007;11:3–5.

    Article  PubMed  CAS  Google Scholar 

  19. Diabira S, Morandi X. Gliomagenesis and neural stem cells: key role of hypoxia and concept of tumor “neo-niche”. Med Hypotheses. 2008;70:96–104.

    Article  PubMed  CAS  Google Scholar 

  20. Stichel CC, Müller HW. The CNS lesion scar: new vistas on an old regeneration barrier. Cell Tissue Res. 1998;294:1–9.

    Article  PubMed  CAS  Google Scholar 

  21. Ridet JL, Malhotra SK, Privat A, Gage FH. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci. 1997;20:570–577.

    Article  PubMed  CAS  Google Scholar 

  22. Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia. 2002;39:193–206.

    Article  PubMed  Google Scholar 

  23. Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.

    Article  PubMed  CAS  Google Scholar 

  24. Hemmati HD, Nakano I, Lazareff JA, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A. 2003;100:15178–15183.

    Article  PubMed  CAS  Google Scholar 

  25. Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci U S A. 2004;101:781–786.

    Article  PubMed  CAS  Google Scholar 

  26. Shih AH, Holland EC. Notch signaling enhances nestin expression in gliomas. Neoplasia. 2006;8:1072–1082.

    Article  PubMed  CAS  Google Scholar 

  27. Kondo T. Brain cancer stem-like cells. Eur J Cancer. 2006;42:1237–1242.

    Article  PubMed  CAS  Google Scholar 

  28. Lee HY, Kléber M, Hari L, et al. Instructive role of Wnt/beta-catenin in sensory fate specification in neural crest stem cells. Science. 2004;303:1020–1023.

    Article  PubMed  CAS  Google Scholar 

  29. Fine HA, Dear KB, Loeffler JS, Black PM, Canellos GP. Meta-analysis of radiation therapy with and without adjuvant chemotherapy for malignant gliomas in adults. Cancer. 1993;71:2585–2597.

    Article  PubMed  CAS  Google Scholar 

  30. Yu JS, Liu GT, Morris-Irvin D, Black KL. Glioblastoma cancer stem cells exhibit chemoresistance with overexpression of multidrug resistance gene BCRP-1: 894. Neurosurgery. 2005;57:428.

    Google Scholar 

  31. Li L, Xie T. Stem cell niche: structure and function. Annu Rev Cell Dev Biol. 2005;21:605–631.

    Article  PubMed  CAS  Google Scholar 

  32. Conover JC, Notti RQ. The neural stem cell niche. Cell Tissue Res. 2008;331:211–224.

    Article  PubMed  Google Scholar 

  33. Jordan JD, Ma DK, Ming GL, Song H. Cellular niches for endogenous neural stem cells in the adult brain. CNS Neurol Disord Drug Targets. 2007;6:336–341.

    Article  PubMed  CAS  Google Scholar 

  34. Gilbertson RJ, Rich JN. Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer. 2007;7:733–736.

    Article  PubMed  CAS  Google Scholar 

  35. Lamszus K, Heese O, Westphal M. Angiogenesis-related growth factors in brain tumors. Cancer Treat Res. 2004;117:169–190.

    PubMed  CAS  Google Scholar 

  36. Dunn IF, Heese O, Black PM. Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFs. J Neurooncol. 2000;50:121–137.

    Article  PubMed  CAS  Google Scholar 

  37. Ramírez-Castillejo C, Sánchez-Sánchez F, Andreu-Agulló C, et al. Pigment epithelium-derived factor is a niche signal for neural stem cell renewal. Nat Neurosci. 2006;9:331–339.

    Article  PubMed  CAS  Google Scholar 

  38. Leventhal C, Rafii S, Rafii D, Shahar A, Goldman SA. Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma. Mol Cell Neurosci. 1999;13:450–464.

    Article  PubMed  CAS  Google Scholar 

  39. Le Bras B, Barallobre MJ, Homman-Ludiye J, et al. VEGF-C is a trophic factor for neural progenitors in the vertebrate embryonic brain. Nat Neurosci. 2006;9:340–348.

    Article  PubMed  CAS  Google Scholar 

  40. De Wever O, Mareel M. Role of tissue stroma in cancer cell invasion. J Pathol. 2003;200:429–447.

    Article  PubMed  CAS  Google Scholar 

  41. Bellail AC, Hunter SB, Brat DJ, Tan C, Van Meir EG. Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int J Biochem Cell Biol. 2004;36:1046–1069.

    Article  PubMed  CAS  Google Scholar 

  42. Friedlander DR, Zagzag D, Shiff B, et al. Migration of brain tumor cells on extracellular matrix proteins in vitro correlates with tumor type and grade and involves alphaV and beta1 integrins. Cancer Res. 1996;56:1939–1947.

    PubMed  CAS  Google Scholar 

  43. Knott JC, Mahesparan R, Garcia-Cabrera I, et al. Stimulation of extracellular matrix components in the normal brain by invading glioma cells. Int J Cancer. 1998;75:864–872.

    Article  PubMed  CAS  Google Scholar 

  44. Bouterfa H, Darlapp AR, Klein E, Pietsch T, Roosen K, Tonn JC. Expression of different extracellular matrix components in human brain tumor and melanoma cells in respect to variant culture conditions. J Neurooncol. 1999;44:23–33.

    Article  PubMed  CAS  Google Scholar 

  45. Brat DJ, Bellail AC, Van Meir EG. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol. 2005;7:122–133.

    Article  PubMed  CAS  Google Scholar 

  46. Mentlein R, Held-Feindt J. Pleiotrophin, an angiogenic and mitogenic growth factor, is expressed in human gliomas. J Neurochem. 2002;83:747–753.

    Article  PubMed  CAS  Google Scholar 

  47. Nagashima G, Suzuki R, Asai J, Fujimoto T. Immunohistochemical analysis of reactive astrocytes around glioblastoma: an immunohistochemical study of postmortem glioblastoma cases. Clin Neurol Neurosurg. 2002;104:125–131.

    Article  PubMed  Google Scholar 

  48. Teicher BA. Malignant cells, directors of the malignant process: role of transforming growth factor-beta. Cancer Metastasis Rev. 2001;20:133–143.

    Article  PubMed  CAS  Google Scholar 

  49. Zhou Y, Larsen PH, Hao C, Yong VW. CXCR4 is a major chemokine receptor on glioma cells and mediates their survival. J Biol Chem. 2002;277:49481–49487.

    Article  PubMed  CAS  Google Scholar 

  50. Barbero S, Bajetto A, Bonavia R, et al. Expression of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1 in human brain tumors and their involvement in glial proliferation in vitro. Ann N Y Acad Sci. 2002;973:60–69.

    PubMed  CAS  Google Scholar 

  51. Huff CA, Matsui W, Smith BD, Jones RJ. The paradox of response and survival in cancer therapeutics. Blood. 2006;107:431–434.

    Article  PubMed  CAS  Google Scholar 

  52. Garcia-Barros M, Paris F, Cordon-Cardo C, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science. 2003;300:1155–1159.

    Article  PubMed  CAS  Google Scholar 

  53. De Toni F, Racaud-Sultan C, Chicanne G, et al. A crosstalk between the Wnt and the adhesion-dependent signaling pathways governs the chemosensitivity of acute myeloid leukemia. Oncogene. 2006;25:3113–3122.

    Article  PubMed  CAS  Google Scholar 

  54. Folkerth RD. Histologic measures of angiogenesis in human primary brain tumors. Cancer Treat Res. 2004;117:79–95.

    PubMed  Google Scholar 

  55. Morgan R, Kreipke CW, Roberts G, Bagchi M, Rafols JA. Neovascularization following traumatic brain injury: possible evidence for both angiogenesis and vasculogenesis. Neurol Res. 2007;29:375–381.

    Article  PubMed  CAS  Google Scholar 

  56. Frontczak-Baniewicz M, Walski M. New vessel formation after surgical brain injury in the rat’s cerebral cortex I. Formation of the blood vessels proximally to the surgical injury. Acta Neurobiol Exp (Wars). 2003;63:65–75.

    Google Scholar 

  57. Liu L, Liu H, Jiao J, et al. Changes in circulating human endothelial progenitor cells after brain injury. J Neurotrauma. 2007;24:936–943.

    Article  PubMed  Google Scholar 

  58. Sköld MK, von Gertten C, Sandberg-Nordqvist AC, Mathiesen T, Holmin S. VEGF and VEGF receptor expression after experimental brain contusion in rat. J Neurotrauma. 2005;22:353–367.

    Article  PubMed  Google Scholar 

  59. Barbero S, Bonavia R, Bajetto A, et al. Stromal cell-derived factor 1alpha stimulates human glioblastoma cell growth through the activation of both extracellular signalregulated kinases 1/2 and Akt. Cancer Res. 2003;63:1969–1974.

    PubMed  CAS  Google Scholar 

  60. Ghirnikar RS, Lee YL, He TR, Eng LF. Chemokine expression in rat stab wound brain injury. J Neurosci Res. 1996;46:727–733.

    Article  PubMed  CAS  Google Scholar 

  61. Fomchenko EI, Holland EC. Platelet-derived growth factor-mediated gliomagenesis and brain tumor recruitment. Neurosurg Clin N Am. 2007;18:39–58.

    Article  PubMed  Google Scholar 

  62. Kulbatski I, Mothe AJ, Nomura H, Tator CH. Endogenous and exogenous CNS derived stem/progenitor cell approaches for neurotrauma. Curr Drug Targets. 2005;6:111–126.

    Article  PubMed  CAS  Google Scholar 

  63. Szele FG, Alexander C, Chesselet MF. Expression of molecules associated with neuronal plasticity in the striatum after aspiration and thermocoagulatory lesions of the cerebral cortex in adult rats. J Neurosci. 1995;15:4429–4448.

    PubMed  CAS  Google Scholar 

  64. Hatten ME, Liem RK, Shelanski ML, Mason CA. Astroglia in CNS injury. Glia. 1991;4:233–243.

    Article  PubMed  CAS  Google Scholar 

  65. Eddleston M, Mucke L. Molecular profile of reactive astrocytes. Implications for their role in neurologic disease. Neuroscience. 1993;54:15–36.

    Article  PubMed  CAS  Google Scholar 

  66. Carbonell WS, Mandell JW. Transient neuronal but persistent astroglial activation of ERK/MAP kinase after focal brain injury in mice. J Neurotrauma. 2003;20:327–336.

    Article  PubMed  Google Scholar 

  67. Hozumi I, Chiu FC, Norton WT. Biochemical and immunocytochemical changes in glial fibrillary acidic protein after stab wounds. Brain Res. 1990;524:64–71.

    Article  PubMed  CAS  Google Scholar 

  68. Müller FJ, Snyder EY, Loring JF. Gene therapy: can neural stem cells deliver? Nat Rev Neurosci. 2006;7:75–84.

    Article  PubMed  CAS  Google Scholar 

  69. Takano T, Lin JH, Arcuino G, Gao Q, Yang J, Nedergaard M. Glutamate release promotes growth of malignant gliomas. Nat Med. 2001;7:1010–1015.

    Article  PubMed  CAS  Google Scholar 

  70. Lenzlinger PM, Morganti-Kossmann MC, Laurer HL, McIntosh TK. The duality of the inflammatory response to traumatic brain injury. Mol Neurobiol. 2001;24:169–181.

    Article  PubMed  CAS  Google Scholar 

  71. Chang CY, Li MC, Liao SL, Huang YL, Shen CC, Pan HC. Prognostic and clinical implication of IL-6 expression in glioblastoma multiforme. J Clin Neurosci. 2005;12:930–933.

    Article  PubMed  CAS  Google Scholar 

  72. Tate CC, Tate MC, LaPlaca MC. Fibronectin and laminin increase in the mouse brain after controlled cortical impact injury. J Neurotrauma. 2007;24:226–230.

    Article  PubMed  Google Scholar 

  73. Falo MC, Fillmore HL, Reeves TM, Phillips LL. Matrix metalloproteinase-3 expression profile differentiates adaptive and maladaptive synaptic plasticity induced by traumatic brain injury. J Neurosci Res. 2006;84:768–781.

    Article  PubMed  CAS  Google Scholar 

  74. Nishio T, Kawaguchi S, Yamamoto M, Iseda T, Kawasaki T, Hase T. Tenascin-C regulates proliferation and migration of cultured astrocytes in a scratch wound assay. Neuroscience. 2005;132:87–102.

    Article  PubMed  CAS  Google Scholar 

  75. McGraw J, Hiebert GW, Steeves JD. Modulating astrogliosis after neurotrauma. J Neurosci Res. 2001;63:109–115.

    Article  PubMed  CAS  Google Scholar 

  76. Aarum J, Sandberg K, Haeberlein SL, Persson MA. Migration and differentiation of neural precursor cells can be directed by microglia. Proc Natl Acad Sci U S A. 2003;100:15983–15988.

    Article  PubMed  CAS  Google Scholar 

  77. Aboody KS, Brown A, Rainov NG, et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci U S A. 2000;97:12846–12851.

    Article  PubMed  CAS  Google Scholar 

  78. Salman H, Ghosh P, Kernie SG. Subventricular zone neural stem cells remodel the brain following traumatic injury in adult mice. Neurotrauma. 2004;21:283–292.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Jie Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, JM., Mao, BY., Hong, S. et al. The postoperative brain tumour stem cell (BTSC) niche and cancer recurrence. Adv Therapy 25, 389–398 (2008). https://doi.org/10.1007/s12325-008-0050-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12325-008-0050-x

Keywords

Navigation