Skip to main content

Advertisement

Log in

Cellular and Functional Imaging of Cardiac Transplant Rejection

  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Heart transplantation is now an established treatment for patients suffering from end-stage heart diseases. With the advances in immunosuppressive treatment, the survival rate for transplant patients has improved greatly. However, allograft rejection, both acute and chronic, after heart transplantation is still a limitation leading to morbidity and mortality. The current clinical gold standard for screening rejection is endomyocardial biopsy (EMB), which is not only invasive, but also error-prone, due to the limited sample size and the site location of sampling. It would be highly desirable to have reliable and noninvasive alternatives for EMB in monitoring cardiac allograft rejection. The objective of this review is to highlight how cardiovascular imaging can contribute to noninvasively detecting and to evaluating both acute and chronic allograft rejection after heart transplantation, in particular, cardiovascular MRI (CMRI); and how CMRI can assess both immune cell infiltration at the rejecting organ, and the cardiac dysfunctions resulting from allograft rejection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Nair V, Butany J: Heart transplant biopsies: interpretation and significance. J Clin Pathol 2010, 63:12–20.

    Article  CAS  PubMed  Google Scholar 

  2. Stewart S, Winters GL, Fishbein MC, et al.: Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. J Heart Lung Transplant 2005, 24:1710–1720.

    Article  PubMed  Google Scholar 

  3. Mehra MR, Crespo-Leiro MG, Dipchand A, et al.: International Society for Heart and Lung Transplantation working formulation of a standardized nomenclature for cardiac allograft vasculopathy--2010. J Heart Lung Transplant 2010, 29:717–727.

    Article  PubMed  Google Scholar 

  4. Christen T, Shimizu K, Libby P: Advances in imaging of cardiac allograft rejection. Curr Cardiovasc Imaging Rep 2010, 3:99–105.

    Article  Google Scholar 

  5. Estep JD, Shah DJ, Nagueh SF, et al.: The role of multimodality cardiac imaging in the transplanted heart. JACC Cardiovasc Imaging 2009, 2:1126–1140.

    Article  PubMed  Google Scholar 

  6. Butler CR, Thompson R, Haykowsky M, et al.: Cardiovascular magnetic resonance in the diagnosis of acute heart transplant rejection: a review. J Cardiovasc Magn Reson 2009, 11:7.

    Article  PubMed  Google Scholar 

  7. Mondillo S, Maccherini M, Galderisi M: Usefulness and limitations of transthoracic echocardiography in heart transplantation recipients. Cardiovasc Ultrasound 2008, 6:2.

    Article  PubMed  Google Scholar 

  8. Mehra MR, Uber PA, Benitez RM: Gene-based bio-signature patterns and cardiac allograft rejection. Heart Fail Clin 2010, 6:87–92.

    Article  PubMed  Google Scholar 

  9. • Christen T, Nahrendorf M, Wildgruber M, et al.: Molecular imaging of innate immune cell function in transplant rejection. Circulation 2009, 119:1925–1932. The authors took a step further to investigate which macrophage functions are important in allograft rejection by probing the innate immunity with quenched fluorescent substrate reporter for cathepsin proteases and a nanoparticle-based phagocytosis sensor, along with cellular MRI tracking macrophages in vivo in a mouse model.

  10. Lindenfeld J, Miller GG, Shakar SF, et al.: Drug therapy in the heart transplant recipient: part II: immunosuppressive drugs. Circulation 2004, 110:3858–3865.

    Article  CAS  PubMed  Google Scholar 

  11. Gradek WQ, D’Amico C, Smith AL, et al.: Routine surveillance endomyocardial biopsy continues to detect significant rejection late after heart transplantation. J Heart Lung Transplant 2001, 20:497–502.

    Article  CAS  PubMed  Google Scholar 

  12. Fishbein MC, Kobashigawa J: Biopsy-negative cardiac transplant rejection: etiology, diagnosis, and therapy. Curr Opin Cardiol 2004, 19:166–169.

    Article  PubMed  Google Scholar 

  13. Jimenez J, Kapadia SR, Yamani MH, et al.: Cellular rejection and rate of progression of transplant vasculopathy: a 3-year serial intravascular ultrasound study. J Heart Lung Transplant 2001, 20:393–398.

    Article  CAS  PubMed  Google Scholar 

  14. Yamani MH, Yousufuddin M, Starling RC, et al.: Does acute cellular rejection correlate with cardiac allograft vasculopathy? J Heart Lung Transplant 2004, 23:272–276.

    Article  PubMed  Google Scholar 

  15. Mitchell RN: Graft vascular disease: immune response meets the vessel wall. Annu Rev Pathol 2009, 4:19–47.

    Article  CAS  PubMed  Google Scholar 

  16. Suzuki J, Isobe M, Morishita R, Nagai R: Characteristics of chronic rejection in heart transplantation: important elements of pathogenesis and future treatments. Circ J 2010, 74:233–239.

    Article  CAS  PubMed  Google Scholar 

  17. Martins PN: Assessment of graft function in rodent models of heart transplantation. Microsurgery 2008, 28:565–570.

    Article  PubMed  Google Scholar 

  18. Steinbruchel DA, Nielsen B, Salomon S, Kemp E: A new model for heterotopic heart transplantation in rodents: graft atrial septectomy. Transplant Proc 1994, 26:1298–1299.

    CAS  PubMed  Google Scholar 

  19. Asfour B, Hare JM, Kohl T, et al. : A simple new model of physiologically working heterotopic rat heart transplantation provides hemodynamic performance equivalent to that of an orthotopic heart. J Heart Lung Transplant 1999, 18:927–936.

    Article  CAS  PubMed  Google Scholar 

  20. Hasegawa T, Visovatti SH, Hyman MC, et al.: Heterotopic vascularized murine cardiac transplantation to study graft arteriopathy. Nat Protoc 2007, 2:471–480.

    Article  CAS  PubMed  Google Scholar 

  21. • Kanno S, Wu YJ, Lee PC, et al.: Macrophage accumulation associated with rat cardiac allograft rejection detected by magnetic resonance imaging with ultrasmall superparamagnetic iron oxide particles. Circulation 2001, 104:934–938. This is the first successful demonstration of in vivo detection of macrophage accumulation in the rejecting allograft hearts with MRI and its relationship with immunosuppressive agents in a rodent non-working heart model.

  22. • Wu YL, Ye Q, Sato K, et al.: Noninvasive evaluation of cardiac allograft rejection by cellular and functional cardiac magnetic resonance. JACC Cardiovasc Imaging 2009, 2:731–741. The authors used a two-pronged cellular and functional MRI approach to evaluate cardiac rejection in a rodent working heart transplant model by simultaneously monitoring both the macrophage accumulation in the rejecting hearts and local ventricular wall motion with fine strain analysis. The results show that the early mild allograft rejection is very heterogeneous and that the multiparameter CMRI has the potential to provide accurate noninvasive diagnosis of cardiac rejection.

  23. Ho C, Hitchens TK: A non-invasive approach to detecting organ rejection by MRI: Monitoring the accumulation of immune cell cells at the transplanted organ. Curr Pharmaceut Biotechnol 2004, 5:551–566.

    Article  CAS  Google Scholar 

  24. Wu Y-JL, Sato K, Qing Y, Ho C: MRI investigation of graft rejection following organ transplantation using rodent models. Method Enzymol 2004, 386:73–105.

    Article  Google Scholar 

  25. • Wu YL, Ye Q, Foley LM, et al. : In situ labeling of immune cells with iron oxide particles: an approach to detect organ rejection by cellular MRI. Proc Natl Acad Sci U S A 2006, 103:1852–1857. Using the micrometer-sized MPIO and the USPIO particles to monitor macrophage infiltration in a rodent working heart transplantation model, the results show temporal progression of macrophage infiltration in vivo.

  26. • Ye Q, Wu YL, Foley LM, et al.: Longitudinal tracking of recipient macrophages in a rat chronic cardiac allograft rejection model with noninvasive magnetic resonance imaging using micrometer-sized paramagnetic iron oxide particles. Circulation 2008, 118:149–156. This article reports a longitudinal monitoring of macrophage accumulation for more than 3 months in a single gene–mismatched chronic cardiac rejection transplantation model. The results show that macrophages labeled with MPIO can serve as an early marker for CAV.

  27. Kobashigawa JA, Patel JK: Immunosuppression for heart transplantation: where are we now? Nat Clin Pract Cardiovasc Med 2006, 3:203–212.

    Article  CAS  PubMed  Google Scholar 

  28. Shirwan H, Wu GD, Barwari L, et al.: Induction of allograft nonresponsiveness after intrathymic inoculation with donor class I allopeptides. II. Evidence for persistent chronic rejection despite high levels of donor microchimerism. Transplantation 1997, 64:1671–1676.

    Article  CAS  PubMed  Google Scholar 

  29. Bellenger NG, Marcus NJ, Davies C, et al.: Left ventricular function and mass after orthotopic heart transplantation: a comparison of cardiovascular magnetic resonance with echocardiography. J Heart Lung Transplant 2000, 19:444–452.

    Article  CAS  PubMed  Google Scholar 

  30. Marie PY, Angioi M, Carteaux JP, et al. : Detection and prediction of acute heart transplant rejection with the myocardial T2 determination provided by a black-blood magnetic resonance imaging sequence. J Am Coll Cardiol 2001, 37:825–831.

    Article  CAS  PubMed  Google Scholar 

  31. Almenar L, Igual B, Martinez-Dolz L, et al.: Utility of cardiac magnetic resonance imaging for the diagnosis of heart transplant rejection. Transplant Proc 2003, 35:1962–1964.

    Article  CAS  PubMed  Google Scholar 

  32. Muehling OM, Wilke NM, Panse P, et al.: Reduced myocardial perfusion reserve and transmural perfusion gradient in heart transplant arteriopathy assessed by magnetic resonance imaging. J Am Coll Cardiol 2003, 42:1054–1060.

    Article  PubMed  Google Scholar 

  33. Rivard AL, Swingen CM, Blake D, et al.: A comparison of myocardial perfusion and rejection in cardiac transplant patients. Int J Cardiovasc Imaging 2007, 23:575–582.

    Article  PubMed  Google Scholar 

  34. Taylor AJ, Vaddadi G, Pfluger H, et al.: Diagnostic performance of multisequential cardiac magnetic resonance imaging in acute cardiac allograft rejection. Eur J Heart Fail 2010, 12:45–51.

    Article  PubMed  Google Scholar 

  35. Kim YJ, Kang SM, Hur J, et al.: Images in cardiovascular medicine. Chronic cardiac transplant rejection: evaluation with magnetic resonance imaging. Circulation 2008, 118:885–886.

    Article  PubMed  Google Scholar 

  36. Usta E, Burgstahler C, Aebert H, et al.: The challenge to detect heart transplant rejection and transplant vasculopathy non-invasively--a pilot study. J Cardiothorac Surg 2009, 4:43.

    Article  PubMed  Google Scholar 

  37. Caus T, Kober F, Marin P, et al.: Non-invasive diagnostic of cardiac allograft vasculopathy by 31P magnetic resonance chemical shift imaging. Eur J Cardiothorac Surg 2006, 29:45–49.

    Article  PubMed  Google Scholar 

  38. Johansson L, Johnsson C, Penno E, et al.: Acute cardiac transplant rejection: detection and grading with MR imaging with a blood pool contrast agent--experimental study in the rat. Radiology 2002, 225:97–103.

    Article  PubMed  Google Scholar 

  39. Penno E, Johnsson C, Johansson L, Ahlstrom H: Macrophage uptake of ultra-small iron oxide particles for magnetic resonance imaging in experimental acute cardiac transplant rejection. Acta Radiol 2006, 47:264–271.

    Article  CAS  PubMed  Google Scholar 

  40. Beckmann N, Cannet C, Zurbruegg S, et al.: Macrophage infiltration detected at MR imaging in rat kidney allografts: early marker of chronic rejection? Radiology 2006, 240:717–724.

    Article  PubMed  Google Scholar 

  41. Ye Q, Yang D, Williams M, et al.: In vivo detection of acute rat renal allograft rejection by MRI with USPIO particles. Kidney Int 2002, 61:1124–1135.

    Article  PubMed  Google Scholar 

  42. Yang D, Ye Q, Williams M, et al. : USPIO-enhanced dynamic MRI: evaluation of normal and transplanted rat kidneys. Magn Reson Med 2001, 46:1152–1163.

    Article  CAS  PubMed  Google Scholar 

  43. Arbab AS, Yocum GT, Kalish H, et al.: Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 2004, 104:1217–1223.

    Article  CAS  PubMed  Google Scholar 

  44. Bernd H, De Kerviler E, Gaillard S, Bonnemain B: Safety and tolerability of ultrasmall superparamagnetic iron oxide contrast agent: comprehensive analysis of a clinical development program. Invest Radiol 2009, 44:336–342.

    Article  CAS  PubMed  Google Scholar 

  45. Williams JB, Ye Q, Hitchens TK, et al.: MRI detection of macrophages labeled using micrometer-sized iron oxide particles. J Magn Reson Imaging 2007, 25:1210–1218.

    Article  PubMed  Google Scholar 

  46. Shapiro EM, Skrtic S, Koretsky AP: Sizing it up: cellular MRI using micron-sized iron oxide particles. Magn Reson Med 2005, 53:329–338.

    Article  PubMed  Google Scholar 

  47. Shapiro EM, Sharer K, Skrtic S, Koretsky AP: In vivo detection of single cells by MRI. Magn Reson Med 2006, 55:242–249.

    Article  PubMed  Google Scholar 

  48. Chen C, Zhang H, Ye Q, et al.: A new nano-sized iron-oxide particle with high sensitivity for cellular magnetic resonance imaging. Mol Imaging Biol 2010, In press.

  49. Dandel M, Hetzer R: Echocardiographic strain and strain rate imaging--clinical applications. Int J Cardiol 2009, 132:11–24.

    Article  PubMed  Google Scholar 

  50. Kato TS, Oda N, Hashimura K, et al.: Strain rate imaging would predict sub-clinical acute rejection in heart transplant recipients. Eur J Cardiothorac Surg 2010, 37:1104–1110.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work is supported by National Institutes of Health grants (R01HL-081349 and P41EB-001977).

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien Ho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y.L., Ye, Q. & Ho, C. Cellular and Functional Imaging of Cardiac Transplant Rejection. Curr Cardiovasc Imaging Rep 4, 50–62 (2011). https://doi.org/10.1007/s12410-010-9055-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-010-9055-3

Keywords

Navigation