Skip to main content
Log in

Cardiac CT: Imaging of and Through Cardiac Devices

  • Cardiac Computed Tomography (TC Villines and S Achenbach, Section Editors)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

For patients with cardiac devices, cardiac computed tomography (CT) remains the mainstay for imaging due to its superior resolution as compared with echocardiography and nuclear studies and no contraindication to metal as with cardiac magnetic resonance imaging. This review focuses on the evaluation and pitfalls of coronary arterial imaging in patients with devices, such as pacemakers, implantable defibrillators, cardiac resynchronization therapy (CRT), as well as complications such as lead perforation and safety concerns of CT interference. We discuss both pre- and post-procedural CRT assessment for coronary venous imaging and pre-procedural myocardial scar assessment to localize regions of scar and peri-infarct zone to facilitate ventricular tachycardia ablation in patients with devices. We describe potential new research on dyssynchrony and integration with myocardial scar and site of latest activation for patients with or being considered for CRT. We detail the utility of CT for the assessment of proper function and complications in patients with left ventricular assist device implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Taylor AJ, Cerqueira M, Hodgson JM, Mark D, Min J, O'Gara P, Rubin GD, et al. Accf/scct/acr/aha/ase/asnc/nasci/scai/scmr 2010 appropriate use criteria for cardiac computed tomography. A report of the American College of Cardiology Foundation appropriate use criteria task force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol. 2010;56:1864–94.

    Article  PubMed  Google Scholar 

  2. McCollough CH, Zhang J, Primak AN, Clement WJ, Buysman JR. Effects of ct irradiation on implantable cardiac rhythm management devices1. Radiology. 2007;243:766–74.

    Article  PubMed  Google Scholar 

  3. DiFilippo FP, Brunken RC. Do implanted pacemaker leads and icd leads cause metal-related artifact in cardiac pet/ct? J Nucl Med. 2005;46:436–43.

    PubMed  Google Scholar 

  4. Sosnowski M, Mlynarski R, Wlodyka A, Brzoska J, Kargul W, Tendera M. The presence of endocardial leads may limit applicability of coronary ct angiography. Scand Cardiovasc J. 2010;44:31–6.

    Article  PubMed  Google Scholar 

  5. Mlynarski R, Sosnowski M, Mlynarska A, Tendera M. Computed tomography in patients with cardiac pacemakers: difficulties and solutions. Heart Vessels. 2012;27:300–6.

    Google Scholar 

  6. Meyer LT, Boll DT. Novel technique for addressing streak artifact in gated dual-source mdct angiography utilizing ecg-editing. Eur Radiol. 2008;18:2446–8.

    Article  PubMed  Google Scholar 

  7. Hirschl DA, Jain VR, Spindola-Franco H, Gross JN, Haramati LB. Prevalence and characterization of asymptomatic pacemaker and ICD lead perforation on CT. Pacing Clin Electrophysiol. 2007;30:28–32.

    Article  PubMed  Google Scholar 

  8. Pinski SL, Trohman RG. Interference in implanted cardiac devices, part ii. Pacing Clin Electrophysiol. 2002;25:1496–509.

    Article  PubMed  Google Scholar 

  9. Mouton J, Haug R, Bridier A, Dodinot B, Eschwege F. Influence of high-energy photon beam irradiation on pacemaker operation. Phys Med Biol. 2002;47:2879–93.

    Article  PubMed  CAS  Google Scholar 

  10. Yamaji S, Imai S, Saito F, Yagi H, Kushiro T, Uchiyama T. Does high-power computed tomography scanning equipment affect the operation of pacemakers? Circ J. 2006;70:190–7.

    Article  PubMed  Google Scholar 

  11. Cleland JG, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352:1539–49.

    Article  PubMed  CAS  Google Scholar 

  12. Singh JP, Houser S, Heist EK, Ruskin JN. The coronary venous anatomy: a segmental approach to aid cardiac resynchronization therapy. J Am Coll Cardiol. 2005;46:68–74.

    Article  PubMed  Google Scholar 

  13. Gras D, Bocker D, Lunati M, Wellens HJ, Calvert M, Freemantle N, Gervais R, et al. Implantation of cardiac resynchronization therapy systems in the care-hf trial: procedural success rate and safety. Europace. 2007;9:516–22.

    Article  PubMed  CAS  Google Scholar 

  14. Abbara S, Cury RC, Nieman K, Reddy V, Moselewski F, Schmidt S, Ferencik M, et al. Noninvasive evaluation of cardiac veins with 16-mdct angiography. AJR Am J Roentgenol. 2005;185:1001–6.

    Article  PubMed  Google Scholar 

  15. Shinbane JS, Girsky MJ, Mao S, Budoff MJ. Thebesian valve imaging with electron beam ct angiography: implications for resynchronization therapy. Pacing Clin Electrophysiol. 2004;27:1566–7.

    Article  PubMed  Google Scholar 

  16. Macias A, Garcia-Bolao I, Diaz-Infante E, Tolosana JM, Vidal B, Gavira JJ, et al. Cardiac resynchronization therapy: predictive factors of unsuccessful left ventricular lead implant. Eur Heart J. 2007;28:450–6.

    Article  PubMed  Google Scholar 

  17. Knackstedt C, Muhlenbruch G, Mischke K, Schimpf T, Spuntrup E, Gunther RW, et al. Imaging of the coronary venous system in patients with congestive heart failure: comparison of 16 slice msct and retrograde coronary sinus venography: Comparative imaging of coronary venous system. Int J Cardiovasc Imag. 2008;24:783–91.

    Article  Google Scholar 

  18. Muhlenbruch G, Koos R, Wildberger JE, Gunther RW, Mahnken AH. Imaging of the cardiac venous system: comparison of mdct and conventional angiography. AJR Am J Roentgenol. 2005;185:1252–7.

    Article  PubMed  Google Scholar 

  19. Van de Veire NR, Schuijf JD, De Sutter J, Devos D, Bleeker GB, de Roos A, et al. Non-invasive visualization of the cardiac venous system in coronary artery disease patients using 64-slice computed tomography. J Am Coll Cardiol. 2006;48:1832–8.

    Article  PubMed  Google Scholar 

  20. Jongbloed MR, Lamb HJ, Bax JJ, Schuijf JD, de Roos A, van der Wall EE, et al. Noninvasive visualization of the cardiac venous system using multislice computed tomography. J Am Coll Cardiol. 2005;45:749–53.

    Article  PubMed  Google Scholar 

  21. Mlynarski R, Sosnowski M, Wlodyka A, Kargul W, Tendera M. A user-friendly method of cardiac venous system visualization in 64-slice computed tomography. Pacing Clin Electrophysiol. 2009;32:323–9.

    Article  PubMed  Google Scholar 

  22. Mlynarski R, Sosnowski M, Wlodyka A, Chromik K, Kargul W, Tendera M. Optimal image reconstruction intervals for noninvasive visualization of the cardiac venous system with a 64-slice computed tomography. Int J Cardiovasc Imag. 2009;25:635–41.

    Article  Google Scholar 

  23. Auricchio A, Sorgente A, Singh JP, Faletra F, Conca C, Pedrazzini GB, et al. Role of multislice computed tomography for preprocedural evaluation before revision of a chronically implanted transvenous left ventricular lead. Am J Cardiol. 2007;100:1566–70.

    Article  PubMed  Google Scholar 

  24. • Cury RC, Nieman K, Shapiro MD, Butler J, Nomura CH, Ferencik M, Hoffmann U, Abbara S, Jassal DS, et al. Comprehensive assessment of myocardial perfusion defects, regional wall motion, and left ventricular function by using 64-section multidetector CT. Radiology. 2008;248:466–75. A comprehensive assessment of the use of CT in the evaluation of myocardial perfusion defects, regional wall motion abnormalities and left ventricular function in patients after myocardial infarction.

    Article  PubMed  Google Scholar 

  25. Bauer RW, Kerl JM, Fischer N, Burkhard T, Larson MC, Ackermann H, et al. Dual-energy ct for the assessment of chronic myocardial infarction in patients with chronic coronary artery disease: comparison with 3-t mri. AJR Am J Roentgenol. 2010;195:639–46.

    Article  PubMed  Google Scholar 

  26. So A, Lee TY, Imai Y, Narayanan S, Hsieh J, Kramer J, et al. Quantitative myocardial perfusion imaging using rapid kvp switch dual-energy CT: preliminary experience. J Cardiovasc Comput Tomogr. 2011;5:430–42.

    Article  PubMed  Google Scholar 

  27. Tian J, Jeudy J, Smith MF, Jimenez A, Yin X, Bruce PA, et al. Three-dimensional contrast-enhanced multidetector ct for anatomic, dynamic, and perfusion characterization of abnormal myocardium to guide ventricular tachycardia ablations. Circ Arrhythm Electrophysiol. 2010;3:496–504.

    Article  PubMed  Google Scholar 

  28. Bax JJ, Abraham T, Barold SS, Breithardt OA, Fung JW, Garrigue S, et al. Cardiac resynchronization therapy: part 2-issues during and after device implantation and unresolved questions. J Am Coll Cardiol. 2005;46:2168–82.

    Article  PubMed  Google Scholar 

  29. Bleeker GB, Kaandorp TA, Lamb HJ, Boersma E, Steendijk P, de Roos A, et al. Effect of posterolateral scar tissue on clinical and echocardiographic improvement after cardiac resynchronization therapy. Circulation. 2006;113:969–76.

    Article  PubMed  Google Scholar 

  30. Goitein O, Lacomis JM, Gorcsan III J, Schwartzman D. Left ventricular pacing lead implantation: potential utility of multimodal image integration. Heart Rhythm. 2006;3:91–4.

    Article  PubMed  Google Scholar 

  31. Truong QA, Singh JP, Cannon CP, Sarwar A, Nasir K, Auricchio A, et al. Quantitative analysis of intraventricular dyssynchrony using wall thickness by multidetector computed tomography. JACC Cardiovasc Imaging. 2008;1:772–81.

    Article  PubMed  Google Scholar 

  32. Sra J, Krum D, Malloy A, Vass M, Belanger B, Soubelet E, et al. Registration of three-dimensional left atrial computed tomographic images with projection images obtained using fluoroscopy. Circulation. 2005;112:3763–8.

    Article  PubMed  Google Scholar 

  33. Auricchio A, Sorgente A, Soubelet E, Regoli F, Spinucci G, Vaillant R, et al. Accuracy and usefulness of fusion imaging between three-dimensional coronary sinus and coronary veins computed tomographic images with projection images obtained using fluoroscopy. Europace. 2009;11:1483–90.

    Article  PubMed  Google Scholar 

  34. Radovancevic B, Vrtovec B, Frazier OH. Left ventricular assist devices: an alternative to medical therapy for end-stage heart failure. Curr Opin Cardiol. 2003;18:210–4.

    Article  PubMed  Google Scholar 

  35. Dembitsky WP, Tector AJ, Park S, Moskowitz AJ, Gelijns AC, Ronan NS, et al. Left ventricular assist device performance with long-term circulatory support: lessons from the rematch trial. Ann Thorac Surg. 2004;78:2123–9. discussion 2129–30.

    Article  PubMed  Google Scholar 

  36. Birks EJ, Tansley PD, Hardy J, George RS, Bowles CT, Burke M, et al. Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med. 2006;355:1873–84.

    Article  PubMed  CAS  Google Scholar 

  37. Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345:1435–43.

    Article  PubMed  CAS  Google Scholar 

  38. Boyle A. Current status of cardiac transplantation and mechanical circulatory support. Curr Heart Fail Rep. 2009;6:28–33.

    Article  PubMed  Google Scholar 

  39. Bolno PB, Kresh JY. Physiologic and hemodynamic basis of ventricular assist devices. Cardiol Clin. 2003;21:15–27.

    Article  PubMed  Google Scholar 

  40. •• Carr CM, Jacob J, Park SJ, Karon BL, Williamson EE, Araoz PA. Ct of left ventricular assist devices. Radiographics. 2010;30:429–44. A comprehensive review of the uses and examples of left ventricular assist devices, with extensive examples of CT images of early and late complications associated with left ventricular assist devices.

    Article  PubMed  Google Scholar 

  41. Raman SV, Tran T, Simonetti OP, Sun B. Dynamic computed tomography to determine cardiac output in patients with left ventricular assist devices. J Thorac Cardiovasc Surg. 2009;137:1213–7.

    Article  PubMed  Google Scholar 

  42. • Raman SV, Sahu A, Merchant AZ, Louis LBt, Firstenberg MS, Sun B. Noninvasive assessment of left ventricular assist devices with cardiovascular computed tomography and impact on management. J Heart Lung Transplant. 2010;29:79–85. An observational cohort study utilizing CT in the evaluation of patients with LVADs and comparing with echocardiographic and intraoperative findings. CT findings were found to be accurate in assessment of symptomatic patients with LVADs.

    Article  PubMed  Google Scholar 

  43. Horton SC, Khodaverdian R, Chatelain P, McIntosh ML, Horne BD, Muhlestein JB, et al. Left ventricular assist device malfunction: an approach to diagnosis by echocardiography. J Am Coll Cardiol. 2005;45:1435–40.

    Article  PubMed  Google Scholar 

  44. Dang NC, Topkara VK, Mercando M, Kay J, Kruger KH, Aboodi MS, et al. Right heart failure after left ventricular assist device implantation in patients with chronic congestive heart failure. J Heart Lung Transplant. 2006;25:1–6.

    Article  PubMed  Google Scholar 

  45. Estep JD, Stainback RF, Little SH, Torre G, Zoghbi WA. The role of echocardiography and other imaging modalities in patients with left ventricular assist devices. JACC Cardiovasc Imaging. 2010;3:1049–64.

    Article  PubMed  Google Scholar 

  46. • Garcia-Alvarez A, Fernandez-Friera L, Lau JF, Sawit ST, Mirelis JG, Castillo JG, et al. Evaluation of right ventricular function and postoperative findings using cardiac computed tomography in patients with left ventricular assist devices. J Heart Lung Transplant. 2011;30:896–903. Comparison of evaluation of right ventricular function by CT and echocardiography in patients with implanted LVADs. CT was shown to be highly feasible and reproducible when compared with echocardiography.

    PubMed  Google Scholar 

  47. Mudd JO, Cuda JD, Halushka M, Soderlund KA, Conte JV, Russell SD. Fusion of aortic valve commissures in patients supported by a continuous axial flow left ventricular assist device. J Heart Lung Transplant. 2008;27:1269–74.

    Article  PubMed  Google Scholar 

  48. Feldman CM, Silver MA, Sobieski MA, Slaughter MS. Management of aortic insufficiency with continuous flow left ventricular assist devices: bioprosthetic valve replacement. J Heart Lung Transplant. 2006;25:1410–2.

    Article  PubMed  Google Scholar 

  49. Pouleur AC, le Polain de Waroux JB, Pasquet A, Vanoverschelde JL, Gerber BL. Aortic valve area assessment: multidetector ct compared with cine mr imaging and transthoracic and transesophageal echocardiography. Radiology. 2007;244:745–54.

    Article  PubMed  Google Scholar 

Download references

Disclosure

Q. A. Truong: support from NIH grant K23HL098370 and L30HL093896 and research grant support from Qi Imaging and St. Jude Medical; G. S. Mak: none.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quynh A. Truong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mak, G.S., Truong, Q.A. Cardiac CT: Imaging of and Through Cardiac Devices. Curr Cardiovasc Imaging Rep 5, 328–336 (2012). https://doi.org/10.1007/s12410-012-9150-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-012-9150-8

Keywords

Navigation