Skip to main content

Advertisement

Log in

PARP Inhibitors

  • Published:
Current Breast Cancer Reports Aims and scope Submit manuscript

Abstract

Poly (ADP-ribose) polymerase (PARP) is a novel therapeutic target in cancer. Preclinical studies demonstrate that PARP inhibitors selectively kill BRCA-deficient cells and potentiate the effects of DNA-damaging agents. There are several PARP inhibitors in clinical development, including olaparib, iniparib, veliparib, PF-01367338, and MK-4827. Phase II studies of single-agent olaparib demonstrate activity in BRCA-associated cancers. A randomized phase II trial showed that the addition of iniparib to gemcitabine and carboplatin in patients with metastatic triple-negative breast cancer (TNBC) improved progression-free survival and overall survival. A phase III trial evaluating this combination in metastatic TNBC has completed accrual. Phase III studies of olaparib in BRCA-associated breast cancer and veliparib in breast cancer are being planned. This article reviews the clinical studies to date that have evaluated PARP inhibitors as a single agent or in combination with chemotherapy in patients with breast cancer, including BRCA-associated breast cancer and TNBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Jemal A, Siegel R, Xu J, Ward E: Cancer statistics, 2010. CA Cancer J Clin 2010, 60:277–300.

    Article  PubMed  Google Scholar 

  2. Brekelmans CT, Seynaeve C, Menke-Pluymers M, et al.: Survival and prognostic factors in BRCA1-associated breast cancer. Ann Oncol 2006, 17:391–400.

    Article  CAS  PubMed  Google Scholar 

  3. Rennert G, Bisland-Naggan S, Barnett-Griness O, et al.: Clinical outcomes of breast cancer in carriers of BRCA1 and BRCA2 mutations. N Engl J Med 2007, 357:115–123.

    Article  CAS  PubMed  Google Scholar 

  4. Dent R, Trudeau M, Pritchard KI, et al.: Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 2007, 13:4429–4434.

    Article  PubMed  Google Scholar 

  5. Tan AR, Swain SM: Therapeutic strategies for triple-negative breast cancer. Cancer J 2008, 14:343–351.

    Article  CAS  PubMed  Google Scholar 

  6. Carey LA, Perou CM, Livasy CA, et al.: Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 2006, 295:2492–2502.

    Article  CAS  PubMed  Google Scholar 

  7. Ame JC, Spenlehauer C, de Murcia G: The PARP superfamily. Bioessays 2004, 26:882–893.

    Article  CAS  PubMed  Google Scholar 

  8. Schreiber V, Dantzer F, Ame JC, de Murcia G: Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 2006, 7:517–528.

    Article  CAS  PubMed  Google Scholar 

  9. Otto H, Reche PA, Bazan F, et al.: In silico characterization of the family of PARP-like poly(ADP-ribosyl)transferases (pARTs). BMC Genomics 2005, 6:139.

    Article  PubMed  Google Scholar 

  10. Tutt A, Bertwistle D, Valentine J, et al.: Mutation in Brca2 stimulates error-prone homology-directed repair of DNA double-strand breaks occurring between repeated sequences. EMBO J 2001, 20:4704–4716.

    Article  CAS  PubMed  Google Scholar 

  11. Lord CJ, Ashworth A: RAD51, BRCA2 and DNA repair: a partial resolution. Nat Struct Mol Biol 2007, 14:461–462.

    Article  CAS  PubMed  Google Scholar 

  12. de Murcia JM, Niedergang C, Trucco C, et al.: Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci U S A 1997, 94:7303–7307.

    Article  PubMed  Google Scholar 

  13. Ashworth A: A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol 2008, 26:3785–3790.

    Article  CAS  PubMed  Google Scholar 

  14. Bryant HE, Schultz N, Thomas HD, et al.: Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 2005, 434:913–917.

    Article  CAS  PubMed  Google Scholar 

  15. Farmer H, McCabe N, Lord CJ, et al.: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005, 434:917–921.

    Article  CAS  PubMed  Google Scholar 

  16. Shrivastav M, De Haro LP, Nickoloff JA: Regulation of DNA double-strand break repair pathway choice. Cell Res 2008, 18:134–147.

    Article  CAS  PubMed  Google Scholar 

  17. Osin PP, Lakhani SR: The pathology of familial breast cancer: Immunohistochemistry and molecular analysis. Breast Cancer Res 1999, 1:36–40.

    Article  CAS  PubMed  Google Scholar 

  18. Lakhani SR, Van De Vijver MJ, Jacquemier J, et al.: The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. J Clin Oncol 2002, 20:2310–2318.

    Article  CAS  PubMed  Google Scholar 

  19. Catteau A, Harris WH, Xu CF, et al.: Methylation of the BRCA1 promoter region in sporadic breast cancer and ovarian cancer: correlation with disease characteristics. Oncogene 1999, 18:1957–1965.

    Article  CAS  PubMed  Google Scholar 

  20. Baldassarre G, Battista S, Belletti B, et al.: Negative regulation of BRCA1 gene expression by HMGA1 proteins accounts for the reduced BRCA1 protein levels in sporadic breast carcinoma. Mol Cell Biol 2003, 23:2225–2238.

    Article  PubMed  Google Scholar 

  21. Hughes-Davies L, Huntsman D, Ruas M, et al.: EMSY links the BRCA2 pathway to sporadic breast and ovarian cancer. Cell 2003, 115:523–535.

    Article  CAS  PubMed  Google Scholar 

  22. Donawho CK, Luo Y, Penning TD, et al.: ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Cancer Res 2007, 13:2728–2737.

    Article  CAS  PubMed  Google Scholar 

  23. Ossovskaya V, Li L, Broude EV, et al.: BSI-201 enhances the activity of multiple classes of cytotoxic agents and irradiation in triple negative breast cancer [abstract 5552]. Proc Am Assoc Cancer Res 2009.

  24. Smith LM, Willmore E, Austin CA, Curtin NJ: The novel poly(ADP-Ribose) polymerase inhibitor, AG14361, sensitizes cells to topoisomerase I poisons by increasing the persistence of DNA strand breaks. Clin Cancer Res 2005, 11:8449–8457.

    Article  CAS  PubMed  Google Scholar 

  25. Sandhu SK, Yap TA, de Bono JS: Poly(ADP-ribose) polymerase inhibitors in cancer treatment: a clinical perspective. Eur J Cancer 2010, 46:9–20.

    Article  CAS  PubMed  Google Scholar 

  26. Underhill C, Toulmonde M, Bonnefoi H: A review of PARP inhibitors: from bench to bedside. Ann Oncol 2010, advanced access published July 19, 2010.

  27. Ferraris DV: Evolution of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. From concept to clinic. J Med Chem 2010, 53:4561–4584.

    Article  CAS  PubMed  Google Scholar 

  28. Cepeda V, Fuertes MA, Castilla J, et al.: Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors in cancer chemotherapy. Recent Pat Anticancer Drug Discov 2006, 1:39–53.

    Article  CAS  PubMed  Google Scholar 

  29. Fong PC, Boss DS, Yap TA, et al.: Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 2009, 361:123–134.

    Article  CAS  PubMed  Google Scholar 

  30. •• Tutt A, Robson M, Garber JE, et al.: Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 2010, 376:235–244. This is a proof-of-concept phase II trial of olaparib monotherapy in BRCA-associated advanced breast cancer. The study reported an ORR of 41% at the MTD of 400 mg orally twice daily and 22% at 100 mg orally twice daily.

  31. Audeh MW, Carmichael J, Penson RT, et al.: Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 2010, 376:245–251.

    Article  CAS  PubMed  Google Scholar 

  32. Sandhu SK, Wenham RM, Wilding G, et al.: First-in-human trial of a poly (ADP-ribose) polymerase (PARP) inhibitor MK-4827 in advanced cancer patients with antitumor activity in BRCA-deficient and sporadic ovarian cancers [abstract 3001]. J Clin Oncol 2010, 28(Suppl 15).

  33. Plummer R, Lorigan P, Evans J, et al.: First and final report of a phase II study of the PARP inhibitor, AG014699, in combination with temozolomide (TMZ) in patients with metastatic malignant melanoma [abstract 8013]. J Clin Oncol 2006, 24(Suppl 18).

  34. Kopetz S, Mita MM, Mok I, et al.: First in human phase I study of BSI-201, a small molecule inhibitor of poly ADP-ribose polymerase (PARP) in subjects with advanced solid tumors [abstract 3577]. J Clin Oncol 2008, 26(Suppl 15).

  35. Mahany JJ, Lewis N, Heath EI, et al.: A phase IB study evaluating BSI-201 in combination with chemotherapy in subjects with advanced solid tumors [abstract 3579]. J Clin Oncol 2008, 26(Suppl 15).

  36. •• O’Shaughnessy J, Osborne C, Pippen J, et al.: Efficacy of BSI-201, a poly (ADP-ribose) polymerase-1 (PARP1) inhibitor, in combination with gemcitabine/carboplatin in patients with metastatic triple negative breast cancer: results of a randomized phase 2 trial [abstract 3]. J Clin Oncol 2009, 27(Suppl 18). This is a pivotal study that first reported the efficacy of iniparib in combination with chemotherapy in metastatic TNBC. In this multicenter, randomized phase II trial of gemcitabine and carboplatin given with or without iniparib to patients with metastatic TNBC, the addition of iniparib to chemotherapy resulted in an improved CBR and ORR compared to chemotherapy alone.

  37. •• O’Shaughnessy J, Osborne C, Pippen J, et al.: Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N Engl J Med 2011, Jan 5 [Epub ahead of print]. This is the final efficacy and safety analysis of the multicenter, randomized phase II trial of gemcitabine and carboplatin given with or without iniparib to patients with metastatic TNBC. The report confirmed the earlier observation of improvement in CBR and ORR with iniparib added to the gemctiabine and carboplatin regimen. It also showed an improvement in OS, although the study was not powered for OS analysis.

  38. BiPar Sciences Inc: Bipar Sciences announces update on the clinical development progress of BSI-201 for metastatic triple-negative breast cancer. Press Release December 11, 2009.

  39. Dent R, Lindemann J, Clemons M, et al.: Safety and efficacy of the oral PARP inhibitor olaparib (AZD2281) in combination with paclitaxel for the first- or second-line treatment of patients with metastatic triple-negative breast cancer: Results from the safety cohort of a phase I/II multicenter trial [abstract 1018]. J Clin Oncol 2010, 28(Suppl 15).

  40. Gelmon KA, Hirte HW, Robidoux A, et al.: Can we define tumors that will respond to PARP inhibitors? A phase II correlative study of olaparib in advanced serous ovarian and triple-negative breast cancer [abstract 3002]. J Clin Oncol 2010, 28(Suppl 15).

  41. Isakoff SJ, Overmoyer B, Tung NM, et al.: A phase II trial of the PARP inhibitor veliparib (ABT-888) and temozolomide for metastatic breast cancer [abstract 1019]. J Clin Oncol 2010, 28(Suppl 15).

  42. O’Shaughnessy J, Osborne C, Pippen J, et al.: Final results of a randomized phase II study demonstrating efficacy and safety of BSI-201, a PARP inhibitor, in combination with gemcitabine/carboplatin in metastatic triple-negative breast cancer [abstract 3122]. Cancer Res 2009, 69(Suppl 3).

  43. McCabe N, Turner NC, Lord CJ, et al.: Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res 2006, 66:8109–8115.

    Article  CAS  PubMed  Google Scholar 

  44. Annunziata CM, O’Shaughnessy J: Poly (ADP-ribose) polymerase as a novel therapeutic target in cancer. Clin Cancer Res 2010, 16:4517–4526.

    Article  CAS  PubMed  Google Scholar 

  45. Anders CK, Winer EP, Ford JM, et al.: Poly(ADP-Ribose) polymerase inhibition: “Targeted” therapy for triple-negative breast cancer. Clin Cancer Res 2010, 16:4702–4710.

    Article  CAS  PubMed  Google Scholar 

  46. Rodriguez A, Rimawi M, Wu M, et al.: A BRCA-like, 25-gene assay predicts for anthracycline-chemosensitivity in sporadic triple-negative breast cancer [abstract 110]. Cancer Res 2009, 69(Suppl 24).

  47. Banuelos CA, Banath JP, Kim JY, Aquino-Parsons C, Olive PL: GammaH2AX expression in tumors exposed to cisplatin and fractionated irradiation. Clin Cancer Res 2009, 15:3344–3353.

    Article  CAS  PubMed  Google Scholar 

  48. Redon CE, Nakamura AJ, Zhang YW, et al.: Histone gammaH2AX and poly(ADP-ribose) as clinical pharmacodynamic biomarkers. Clin Cancer Res 2010, 16:4532–4542.

    Article  CAS  PubMed  Google Scholar 

  49. Liang H, Tan AR: Iniparib, a PARP1 inhibitor for the potential treatment of cancer, including triple-negative breast cancer. IDrugs 2010, 13:646–656.

    CAS  PubMed  Google Scholar 

  50. Lord CJ, Ashworth A: Targeted therapy for cancer using PARP inhibitors. Curr Opin Pharmacol 2008, 8:363–369.

    Article  CAS  PubMed  Google Scholar 

  51. Hay T, Jenkins H, Sansom OJ, et al.: Efficient deletion of normal Brca2-deficient intestinal epithelium by poly(ADP-ribose) polymerase inhibition models potential prophylactic therapy. Cancer Res 2005, 65:10145–10148.

    Article  CAS  PubMed  Google Scholar 

  52. Pacher P, Szabo C: Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. Cardiovasc Drug Rev 2007, 25:235–260.

    Article  CAS  PubMed  Google Scholar 

  53. Goldberg S, Visochek L, Giladi E, Gozes I, Cohen-Armon M: PolyADP-ribosylation is required for long-term memory formation in mammals. J Neurochem 2009, 111:72–79.

    Article  CAS  PubMed  Google Scholar 

  54. Tong WM, Yang YG, Cao WH, et al.: Poly(ADP-ribose) polymerase-1 plays a role in suppressing mammary tumourigenesis in mice. Oncogene 2007, 26:3857–3867.

    Article  CAS  PubMed  Google Scholar 

  55. Sakai W, Swisher EM, Karlan BY, et al.: Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature 2008, 451:1116–1120.

    Article  CAS  PubMed  Google Scholar 

  56. Swisher EM, Sakai W, Karlan BY, et al.: Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with platimum resistance. Cancer Res 2008, 68:2581–2586.

    Article  CAS  PubMed  Google Scholar 

  57. Edwards SL, Brough R, Lord CJ, et al.: Resistance to therapy caused by intragenic deletion in BRCA2. Nature 2008, 451:1111–1115.

    Article  CAS  PubMed  Google Scholar 

  58. Rottenberg S, Jaspers JE, Kersbergen A, et al.: High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci U S A 2008, 105:17079–17084.

    Article  CAS  PubMed  Google Scholar 

  59. AstraZeneca: Second quarter and half year results 2010. Press Release July 29, 2010.

  60. Abbott Laboratories: Second quarter and half year results 2010. Press Release July 21, 2010.

Download references

Disclosure

Hongyan Liang reports no potential conflict of interest relevant to this article. Antoinette R. Tan reports no potential conflict of interest relevant to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoinette R. Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, H., Tan, A.R. PARP Inhibitors. Curr Breast Cancer Rep 3, 44–54 (2011). https://doi.org/10.1007/s12609-010-0036-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12609-010-0036-y

Keywords

Navigation