Skip to main content
Log in

PGF FP Receptor Contributes to Brain Damage Following Transient Focal Brain Ischemia

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Although some of the COX-2 metabolites and prostaglandins have been implicated in stroke and excitotoxicity, the role of prostaglandin F (PGF) and its FP receptor have not been elucidated in the pathogenesis of ischemic-reperfusion (I/R) brain injury. Here we investigated the FP receptor’s contribution in a unilateral middle cerebral artery (MCA) occlusion model of focal cerebral ischemia in mice. The MCA in wild type (WT) and FP knockout (FP−/−) C57BL/6 male mice was transiently occluded with a monofilament for 90 min. After 96 h of reperfusion, the FP−/− mice had 25.3% less neurological deficit (P < 0.05) and 34.4% smaller infarct volumes (P < 0.05) than those of the WT mice. In a separate cohort, physiological parameters were monitored before, during, and after ischemia, and the results revealed no differences between the groups. Because excitotoxicity is an acute mediator of stroke outcome, the effect of acute NMDA-induced neurotoxicity was also tested. Forty-eight hours after unilateral intrastriatal NMDA injection, excitotoxic brain damage was 20.8% less extensive in the FP−/− mice (P < 0.05) than in the WT counterparts, further supporting the toxic contribution of the FP receptor in I/R injury. Additionally, we investigated the effect of post-treatment with the FP agonist latanoprost in mice subjected to MCA occlusion; such treatment resulted in an increase in neurological deficit and infarct size in WT mice (P < 0.05), though no effects were observed in the latanoprost-treated FP−/− mice. Together, the results suggest that the PGF FP receptor significantly enhances cerebral ischemic and excitotoxic brain injury and that these results are of importance when planning for potential development of therapeutic drugs to treat stroke and its acute and/or long term consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CBF:

Cerebral blood flow

COX:

Cyclooxygenase

DMSO:

Dimethyl sulfoxide

I/R:

Ischemia-reperfusion

MABP:

Mean arterial blood pressure

MCA:

Middle cerebral artery

MCAO:

Middle cerebral artery occlusion

PG:

Prostaglandin

WT:

Wild type

References

  • Abdel-Halim MS, Hamberg M, Sjoquist B, Anggard E (1977) Identification of prostaglandin D2 as a major prostaglandin in homogenates of rat brain. Prostaglandins 14:633–643

    Article  PubMed  CAS  Google Scholar 

  • Abramovitz M, Boie Y, Nguyen T, Rushmore TH, Bayne MA, Metters KM, Slipetz DM, Grygorczyk R (1994) Cloning and expression of a cDNA for the human prostanoid FP receptor. J Biol Chem 269:2632–2636

    PubMed  CAS  Google Scholar 

  • Ahmad AS, Ahmad M, de Brum-Fernandes AJ, Doré S (2005) Prostaglandin EP4 receptor agonist protects against acute neurotoxicity. Brain Res 1066:71–77

    Article  PubMed  CAS  Google Scholar 

  • Ahmad AS, Saleem S, Ahmad M, Doré S (2006a) Prostaglandin EP1 receptor contributes to excitotoxicity and focal ischemic brain damage. Toxicol Sci 89:265–270

    Article  PubMed  CAS  Google Scholar 

  • Ahmad AS, Zhuang H, Echeverria V, Doré S (2006b) Stimulation of prostaglandin EP2 receptors prevents NMDA-induced excitotoxicity. J Neurotrauma 23:1895–1903

    Article  PubMed  Google Scholar 

  • Ahmad M, Saleem S, Zhuang H, Ahmad AS, Echeverria V, Sapirstein A, Doré S (2006c) 1-HydroxyPGE1 reduces infarction volume in mouse transient cerebral ischemia. Eur J Neurosci 23:35–42

    Article  PubMed  Google Scholar 

  • Ayata C, Ayata G, Hara H, Matthews RT, Beal MF, Ferrante RJ, Endres M, Kim A, Christie RH, Waeber C, Huang PL, Hyman BT, Moskowitz MA (1997) Mechanisms of reduced striatal NMDA excitotoxicity in type I nitric oxide synthase knock-out mice. J Neurosci 17:6908–6917

    PubMed  CAS  Google Scholar 

  • Bano D, Nicotera P (2007) Ca2+ signals and neuronal death in brain ischemia. Stroke 38:674–676

    Article  PubMed  CAS  Google Scholar 

  • Brault S, Martinez-Bermudez AK, Marrache AM, Gobeil F Jr, Hou X, Beauchamp M, Quiniou C, Almazan G, Lachance C, Roberts J II, Varma DR, Chemtob S (2003) Selective neuromicrovascular endothelial cell death by 8-Iso-prostaglandin F2α: possible role in ischemic brain injury. Stroke 34:776–782

    Article  PubMed  CAS  Google Scholar 

  • Breyer MD, Breyer RM (2001) G protein-coupled prostanoid receptors and the kidney. Annu Rev Physiol 63:579–605

    Article  PubMed  CAS  Google Scholar 

  • Chemtob S, Beharry K, Rex J, Varma DR, Aranda JV (1990a) Changes in cerebrovascular prostaglandins and thromboxane as a function of systemic blood pressure Cerebral blood flow autoregulation of the newborn. Circ Res 67:674–682

    PubMed  CAS  Google Scholar 

  • Chemtob S, Beharry K, Rex J, Varma DR, Aranda JV (1990b) Prostanoids determine the range of cerebral blood flow autoregulation of newborn piglets. Stroke 21:777–784

    PubMed  CAS  Google Scholar 

  • Choi DW (1992) Excitotoxic cell death. J Neurobiol 23:1261–1276

    Article  PubMed  CAS  Google Scholar 

  • Coleman RA, Smith WL, Narumiya S (1994) International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev 46:205–229

    PubMed  CAS  Google Scholar 

  • Cuppoletti J, Malinowska DH, Tewari KP, Chakrabarti J, Ueno R (2007) Cellular and molecular effects of unoprostone as a BK channel activator. Biochim Biophys Acta 1768:1083–1092

    Article  PubMed  CAS  Google Scholar 

  • Dietrich WD, Bramlett HM (2007) Hyperthermia and central nervous system injury. Prog Brain Res 162:201–217

    Article  PubMed  CAS  Google Scholar 

  • Doré S, Otsuka T, Mito T, Sugo N, Hand T, Wu L, Hurn PD, Traystman RJ, Andreasson K (2003) Neuronal overexpression of cyclooxygenase-2 increases cerebral infarction. Ann Neurol 54:155–162

    Article  PubMed  Google Scholar 

  • Echeverria V, Clerman A, Doré S (2005) Stimulation of PGE2 receptors EP2 and EP4 protects cultured neurons against oxidative stress and cell death following β-amyloid exposure. Eur J Neurosci 22:2199–2206

    Article  PubMed  Google Scholar 

  • Ellis EF, Wei EP, Kontos HA (1979) Vasodilation of cat cerebral arterioles by prostaglandins D2, E2, G2, and I2. Am J Physiol 237:H381–385

    PubMed  CAS  Google Scholar 

  • Endres M, Dirnagl U (2002) Ischemia and stroke. Adv Exp Med Biol 513:455–473

    PubMed  CAS  Google Scholar 

  • Hackam DG, Spence JD (2007) Combining multiple approaches for the secondary prevention of vascular events after stroke: a quantitative modeling study. Stroke 38:1881–1885

    Article  PubMed  Google Scholar 

  • Hata AN, Breyer RM (2004) Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation. Pharmacol Ther 103:147–166

    Article  PubMed  CAS  Google Scholar 

  • Heaslip RJ, Sickels BD (1989) Evidence that prostaglandins can contract the rat aorta via a novel protein kinase C-dependent mechanism. J Pharmacol Exp Ther 250:44–51

    PubMed  CAS  Google Scholar 

  • Hoffman WE, Albrecht RF, Pelligrino D, Miletich DJ (1982) Effects of prostaglandins on the cerebral circulation in the coat. Prostaglandins 23:897–905

    Article  PubMed  CAS  Google Scholar 

  • Iadecola C, Niwa K, Nogawa S, Zhao X, Nagayama M, Araki E, Morham S, Ross ME (2001) Reduced susceptibility to ischemic brain injury and N-methyl-d-aspartate-mediated neurotoxicity in cyclooxygenase-2-deficient mice. Proc Natl Acad Sci USA 98:1294–1299

    Article  PubMed  CAS  Google Scholar 

  • Jovanovic N, Pavlovic M, Mircevski V, Du Q, Jovanovic A (2006) An unexpected negative inotropic effect of prostaglandin F in the rat heart. Prostaglandins Other Lipid Mediat 80:110–119

    Article  PubMed  CAS  Google Scholar 

  • Kawano T, Anrather J, Zhou P, Park L, Wang G, Frys KA, Kunz A, Cho S, Orio M, Iadecola C (2006) Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity. Nat Med 12:225–229

    Article  PubMed  CAS  Google Scholar 

  • Kiriyama M, Ushikubi F, Kobayashi T, Hirata M, Sugimoto Y, Narumiya S (1997) Ligand binding specificities of the eight types and subtypes of the mouse prostanoid receptors expressed in Chinese hamster ovary cells. Br J Pharmacol 122:217–224

    Article  PubMed  CAS  Google Scholar 

  • Kitanaka J, Hasimoto H, Sugimoto Y, Negishi M, Aino H, Gotoh M, Ichikawa A, Baba A (1994) Cloning and expression of a cDNA for rat prostaglandin F receptor. Prostaglandins 48:31–41

    Article  PubMed  CAS  Google Scholar 

  • Knock GA, De Silva AS, Snetkov VA, Siow R, Thomas GD, Shiraishi M, Walsh MP, Ward JP, Aaronson PI (2005) Modulation of PGF- and hypoxia-induced contraction of rat intrapulmonary artery by p38 MAPK inhibition: a nitric oxide-dependent mechanism. Am J Physiol Lung Cell Mol Physiol 289:L1039–L1048

    Article  PubMed  CAS  Google Scholar 

  • Lerea LS, Carlson NG, Simonato M, Morrow J, Roberts JLM JO (1997) Prostaglandin F is required for NMDA receptor-mediated induction of c-fos mRNA in dentate gyrus neurons. J Neurosci 17:117–124

    PubMed  CAS  Google Scholar 

  • Li DY, Varma DR, Chemtob S (1995) Up-regulation of brain PGE2 and PGF receptors and receptor-coupled second messengers by cyclooxygenase inhibition in newborn pigs. J Pharmacol Exp Ther 272:15–19

    PubMed  CAS  Google Scholar 

  • Li X, Blizzard KK, Zeng Z, DeVries AC, Hurn PD, McCullough LD (2004) Chronic behavioral testing after focal ischemia in the mouse: functional recovery and the effects of gender. Exp Neurol 187:94–104

    Article  PubMed  Google Scholar 

  • Li W, Wu S, Hickey RW, Rose ME, Chen J, Graham SH (2008) Neuronal cyclooxygenase-2 activity and prostaglandins PGE2, PGD2, and PGF exacerbate hypoxic neuronal injury in neuron-enriched primary culture. Neurochem Res 33:490–499

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Wu L, Breyer R, Mattson MP, Andreasson K (2005) Neuroprotection by the PGE2 EP2 receptor in permanent focal cerebral ischemia. Ann Neurol 57:758–761

    Article  PubMed  CAS  Google Scholar 

  • Lynch DR, Guttmann RP (2002) Excitotoxicity: perspectives based on N-methyl-d-aspartate receptor subtypes. J Pharmacol Exp Ther 300:717–723

    Article  PubMed  CAS  Google Scholar 

  • Manabe Y, Anrather J, Kawano T, Niwa K, Zhou P, Ross ME, Iadecola C (2004) Prostanoids, not reactive oxygen species, mediate COX-2-dependent neurotoxicity. Ann Neurol 55:668–675

    Article  PubMed  CAS  Google Scholar 

  • Minegishi K, Tanaka M, Nishimura O, Tanigaki S, Miyakoshi K, Ishimoto H, Yoshimura Y (2002) Reactive oxygen species mediate leukocyte-endothelium interactions in prostaglandin F-induced luteolysis in rats. Am J Physiol Endocrinol Metab 283:E1308–E1315

    PubMed  CAS  Google Scholar 

  • Muller K, Krieg P, Marks F, Furstenberger G (2000) Expression of PGF receptor mRNA in normal, hyperplastic and neoplastic skin. Carcinogenesis 21:1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Muralikrishna Adibhatla R, Hatcher JF (2006) Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerebral ischemia. Free Radic Biol Med 40:376–387

    Article  PubMed  CAS  Google Scholar 

  • Nakahata K, Kinoshita H, Tokinaga Y, Ishida Y, Kimoto Y, Dojo M, Mizumoto K, Ogawa K, Hatano Y (2006) Vasodilation mediated by inward rectifier K+ channels in cerebral microvessels of hypertensive and normotensive rats. Anesth Analg 102:571–576

    Article  PubMed  CAS  Google Scholar 

  • Narumiya S, Sugimoto Y, Ushikubi F (1999) Prostanoid receptors: structures, properties, and functions. Physiol Rev 79:1193–1226

    PubMed  CAS  Google Scholar 

  • Nonogaki K, Iguchi A, Yatomi A, Uemura K, Miura H, Tamagawa T, Ishiguro T, Sakamoto N (1991) Dissociation of hyperthermic and hyperglycemic effects of central prostaglandin F. Prostaglandins 41:451–462

    Article  PubMed  CAS  Google Scholar 

  • Ogawa S, Kitao Y, Hori O (2007) Ischemia-induced neuronal cell death and stress response. Antioxid Redox Signal 9:573–587

    Article  PubMed  CAS  Google Scholar 

  • Perry CM, McGavin JK, Culy CR, Ibbotson T (2003) Latanoprost: an update of its use in glaucoma and ocular hypertension. Drugs Aging 20:597–630

    Article  PubMed  CAS  Google Scholar 

  • Sharif NA, Kelly CR, Crider JY, Williams GW, Xu SX (2003) Ocular hypotensive FP prostaglandin (PG) analogs: PG receptor subtype binding affinities and selectivities, and agonist potencies at FP and other PG receptors in cultured cells. J Ocul Pharmacol Ther 19:501–515

    Article  PubMed  CAS  Google Scholar 

  • Shinohara Y (2006) Regional differences in incidence and management of stroke—is there any difference between Western and Japanese guidelines on antiplatelet therapy? Cerebrovasc Dis 21(Suppl 1):17–24

    Article  PubMed  Google Scholar 

  • Stjernschantz J, Selénb G, Astin M, Resula B (2000) Microvascular effects of selective prostaglandin analogues in the eye with special reference to latanoprost and glaucoma treatment. Prog Retin Eye Res 19:459–496

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto Y, Yamasaki A, Segi E, Tsuboi K, Aze Y, Nishimura T, Oida H, Yoshida N, Tanaka T, Katsuyama M, Hasumoto K, Murata T, Hirata M, Ushikubi F, Negishi M, Ichikawa A, Narumiya S (1997) Failure of parturition in mice lacking the prostaglandin F receptor. Science 277:681–683

    Article  PubMed  CAS  Google Scholar 

  • Suzuki-Yamamoto T, Nishizawa M, Fukui M, Okuda-Ashitaka E, Nakajima T, Ito S, Watanabe K (1999) cDNA cloning, expression and characterization of human prostaglandin F synthase. FEBS Lett 462:335–340

    Article  PubMed  CAS  Google Scholar 

  • Takayama K, Yuhki K, Ono K, Fujino T, Hara A, Yamada T, Kuriyama S, Karibe H, Okada Y, Takahata O, Taniguchi T, Iijima T, Iwasaki H, Narumiya S, Ushikubi F (2005) Thromboxane A2 and prostaglandin F mediate inflammatory tachycardia. Nat Med 11:562–566

    Article  PubMed  CAS  Google Scholar 

  • Toh H, Ichikawa A, Narumiya S (1995) Molecular evolution of receptors for eicosanoids. FEBS Lett 361:17–21

    Article  PubMed  CAS  Google Scholar 

  • Ueno R, Narumiya S, Ogorochi T, Nakayama T, Ishikawa Y, Hayaishi O (1982) Role of prostaglandin D2 in the hypothermia of rats caused by bacterial lipopolysaccharide. Proc Natl Acad Sci USA 79:6093–6097

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Sun J, Lu R, Ji Q, Xu JG (2005) Effect of glutamate on inflammatory responses of intestine and brain after focal cerebral ischemia. World J Gastroenterol 11:733–736

    PubMed  CAS  Google Scholar 

  • Xu W, Chou CL, Sun H, Fujino H, Chen QM, Regan JW (2007) FP prostanoid receptor-mediated induction of the expression of early growth response factor-1 by activation of a Ras/Raf/mitogen-activated protein kinase signaling cascade. Mol Pharmacol 73:111–118

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Institutes of Health NS046400 and AG022971 (SD). We thank all members of the Doré lab team for assistance in this project, and Claire Levine for assistance in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Doré.

Additional information

Sofiyan Saleem and Abdullah Shafique Ahmad contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saleem, S., Ahmad, A.S., Maruyama, T. et al. PGF FP Receptor Contributes to Brain Damage Following Transient Focal Brain Ischemia. Neurotox Res 15, 62–70 (2009). https://doi.org/10.1007/s12640-009-9007-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-009-9007-3

Keywords

Navigation