Skip to main content

Advertisement

Log in

Reciprocal Effects of α-Synuclein Overexpression and Proteasome Inhibition in Neuronal Cells and Tissue

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Defects in the 20S/26S proteasome and conformational changes in α-synuclein (α-syn) are implicated in the development of sporadic and familial cases of PD. The objective of this study was to evaluate whether α-syn affects proteolysis by the proteasome and, reciprocally, whether proteasome inhibition affects α-syn solubility and localization. Although α-syn directly inhibited purified 20S proteasomes reversibly in vitro, its overexpression in neuroblastoma (SH-SY5Y and SK-N-BE), embryonic kidney (HEK293) cells, or mouse brain did not affect proteasome activity. Proteasome inhibition with MG132 and epoxomicin in SH-SY5Y cells failed to induce α-syn aggregation, although it increased membrane bound forms of endogenous and overexpressed wild-type, but not mutant, α-syn. Concomitantly this treatment generated cytoplasmic α-syn inclusions devoid of polyubiquitin in a small percentage of cells. The combination of proteasome inhibition with serum deprivation, which induced oxidative stress and autophagy, caused the appearance of high molecular weight α-syn species, such as those found in Lewy bodies. Our data suggest that high concentrations of α-syn do not affect proteasome function in vivo, whereas proteasome inhibition can modify synuclein solubility, most prominently under conditions of cell stress which occur during aging. These results have implications for the convergence of age-related oxidative stress and impaired protein degradation in neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abeliovich H, Klionsky DJ (2001) Autophagy in yeast: mechanistic insights and physiological function. Microbiol Mol Biol Rev 65:463–479 (Table)

    Article  CAS  PubMed  Google Scholar 

  • Bedford L, Hay D, Devoy A, Paine S, Powe DG, Seth R, Gray T, Topham I, Fone K, Rezvani N, Mee M, Soane T, Layfield R, Sheppard PW, Ebendal T, Usoskin D, Lowe J, Mayer RJ (2008) Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies. J Neurosci 28:8189–8198

    Article  CAS  PubMed  Google Scholar 

  • Bove J, Zhou C, Jackson-Lewis V, Taylor J, Chu Y, Rideout HJ, Wu DC, Kordower JH, Petrucelli L, Przedborski S (2006) Proteasome inhibition and Parkinson’s disease modeling. Ann Neurol 60:260–264

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Thiruchelvam MJ, Madura K, Richfield EK (2006) Proteasome dysfunction in aged human alpha-synuclein transgenic mice. Neurobiol Dis 23:120–126

    Article  CAS  PubMed  Google Scholar 

  • Cherra SJ, Chu CT (2008) Autophagy in neuroprotection and neurodegeneration: a question of balance. Future Neurol 3:309–323

    PubMed  Google Scholar 

  • Chinta SJ, Andersen JK (2008) Redox imbalance in Parkinson’s disease. Biochim Biophys Acta 1780:1362–1367

    CAS  PubMed  Google Scholar 

  • Colapinto M, Mila S, Giraudo S, Stefanazzi P, Molteni M, Rossetti C, Bergamasco B, Lopiano L, Fasano M (2006) Alpha-synuclein protects SH-SY5Y cells from dopamine toxicity. Biochem Biophys Res Commun 349:1294–1300

    Article  CAS  PubMed  Google Scholar 

  • Cookson MR (2005) The biochemistry of Parkinson’s disease. Annu Rev Biochem 74:29–52

    Article  CAS  PubMed  Google Scholar 

  • Danielson SR, Andersen JK (2008) Oxidative and nitrative protein modifications in Parkinson’s disease. Free Radic Biol Med 44:1787–1794

    Article  CAS  PubMed  Google Scholar 

  • Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302:819–822

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T (2002) Alpha-synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4:160–164

    Article  CAS  PubMed  Google Scholar 

  • Ghee M, Fournier A, Mallet J (2000) Rat alpha-synuclein interacts with Tat binding protein 1, a component of the 26S proteasomal complex. J Neurochem 75:2221–2224

    Article  CAS  PubMed  Google Scholar 

  • Hoffman L, Pratt G, Rechsteiner M (1992) Multiple forms of the 20S multicatalytic and the 26S ubiquitin/ATP-dependent proteases from rabbit reticulocyte lysate. J Biol Chem 267:22362–22368

    CAS  PubMed  Google Scholar 

  • Hoglinger GU, Carrard G, Michel PP, Medja F, Lombes A, Ruberg M, Friguet B, Hirsch EC (2003) Dysfunction of mitochondrial complex I and the proteasome: interactions between two biochemical deficits in a cellular model of Parkinson’s disease. J Neurochem 86:1297–1307

    Article  PubMed  CAS  Google Scholar 

  • Irizarry MC, Kim TW, McNamara M, Tanzi RE, George JM, Clayton DF, Hyman BT (1996) Characterization of the precursor protein of the non-A beta component of senile plaques (NACP) in the human central nervous system. J Neuropathol Exp Neurol 55:889–895

    CAS  PubMed  Google Scholar 

  • Iwai A, Masliah E, Yoshimoto M, Ge N, Flanagan L, de Silva HA, Kittel A, Saitoh T (1995) The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 14:467–475

    Article  CAS  PubMed  Google Scholar 

  • Jenner P, Olanow CW (1998) Understanding cell death in Parkinson’s disease. Ann Neurol 44:S72–S84

    CAS  PubMed  Google Scholar 

  • Kahle PJ, Neumann M, Ozmen L, Muller V, Jacobsen H, Schindzielorz A, Okochi M, Leimer U, van Der PH, Probst A, Kremmer E, Kretzschmar HA, Haass C (2000) Subcellular localization of wild-type and Parkinson’s disease-associated mutant alpha-synuclein in human and transgenic mouse brain. J Neurosci 20:6365–6373

    CAS  PubMed  Google Scholar 

  • Kahle PJ, Neumann M, Ozmen L, Muller V, Odoy S, Okamoto N, Jacobsen H, Iwatsubo T, Trojanowski JQ, Takahashi H, Wakabayashi K, Bogdanovic N, Riederer P, Kretzschmar HA, Haass C (2001) Selective insolubility of alpha-synuclein in human Lewy body diseases is recapitulated in a transgenic mouse model. Am J Pathol 159:2215–2225

    CAS  PubMed  Google Scholar 

  • Kim YS, Lee SJ (2006) Novel covalent modifications of alpha-synuclein during the recovery from proteasomal dysfunction. Biochem Biophys Res Commun 346:1312–1319

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA, Ballabio A, Bamber BA, Bassham DC, Bergamini E, Bi X, Biard-Piechaczyk M, Blum JS, Bredesen DE, Brodsky JL, Brumell JH, Brunk UT, Bursch W, Camougrand N, Cebollero E, Cecconi F, Chen Y, Chin LS, Choi A, Chu CT, Chung J, Clarke PG, Clark RS, Clarke SG, Clave C, Cleveland JL, Codogno P, Colombo MI, Coto-Montes A, Cregg JM, Cuervo AM, Debnath J, Demarchi F, Dennis PB, Dennis PA, Deretic V, Devenish RJ, Di Sano F, Dice JF, Difiglia M, Dinesh-Kumar S, Distelhorst CW, Djavaheri-Mergny M, Dorsey FC, Droge W, Dron M, Dunn WA Jr, Duszenko M, Eissa NT, Elazar Z, Esclatine A, Eskelinen EL, Fesus L, Finley KD, Fuentes JM, Fueyo J, Fujisaki K, Galliot B, Gao FB, Gewirtz DA, Gibson SB, Gohla A, Goldberg AL, Gonzalez R, Gonzalez-Estevez C, Gorski S, Gottlieb RA, Haussinger D, He YW, Heidenreich K, Hill JA, Hoyer-Hansen M, Hu X, Huang WP, Iwasaki A, Jaattela M, Jackson WT, Jiang X, Jin S, Johansen T, Jung JU, Kadowaki M, Kang C, Kelekar A, Kessel DH, Kiel JA, Kim HP, Kimchi A, Kinsella TJ, Kiselyov K, Kitamoto K, Knecht E, Komatsu M, Kominami E, Kondo S, Kovacs AL, Kroemer G, Kuan CY, Kumar R, Kundu M, Landry J, Laporte M, Le W, Lei HY, Lenardo MJ, Levine B, Lieberman A, Lim KL, Lin FC, Liou W, Liu LF, Lopez-Berestein G, Lopez-Otin C, Lu B, Macleod KF, Malorni W, Martinet W, Matsuoka K, Mautner J, Meijer AJ, Melendez A, Michels P, Miotto G, Mistiaen WP, Mizushima N, Mograbi B, Monastyrska I, Moore MN, Moreira PI, Moriyasu Y, Motyl T, Munz C, Murphy LO, Naqvi NI, Neufeld TP, Nishino I, Nixon RA, Noda T, Nurnberg B, Ogawa M, Oleinick NL, Olsen LJ, Ozpolat B, Paglin S, Palmer GE, Papassideri I, Parkes M, Perlmutter DH, Perry G, Piacentini M, Pinkas-Kramarski R, Prescott M, Proikas-Cezanne T, Raben N, Rami A, Reggiori F, Rohrer B, Rubinsztein DC, Ryan KM, Sadoshima J, Sakagami H, Sakai Y, Sandri M, Sasakawa C, Sass M, Schneider C, Seglen PO, Seleverstov O, Settleman J, Shacka JJ, Shapiro IM, Sibirny A, Silva-Zacarin EC, Simon HU, Simone C, Simonsen A, Smith MA, Spanel-Borowski K, Srinivas V, Steeves M, Stenmark H, Stromhaug PE, Subauste CS, Sugimoto S, Sulzer D, Suzuki T, Swanson MS, Tabas I, Takeshita F, Talbot NJ, Talloczy Z, Tanaka K, Tanaka K, Tanida I, Taylor GS, Taylor JP, Terman A, Tettamanti G, Thompson CB, Thumm M, Tolkovsky AM, Tooze SA, Truant R, Tumanovska LV, Uchiyama Y, Ueno T, Uzcategui NL, van DKI, Vaquero EC, Vellai T, Vogel MW, Wang HG, Webster P, Wiley JW, Xi Z, Xiao G, Yahalom J, Yang JM, Yap G, Yin XM, Yoshimori T, Yu L, Yue Z, Yuzaki M, Zabirnyk O, Zheng X, Zhu X, Deter RL (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4:151–175

    Google Scholar 

  • Kordower JH, Kanaan NM, Chu Y, Suresh BR, Stansell JIII, Terpstra BT, Sortwell CE, Steece-Collier K, Collier TJ (2006) Failure of proteasome inhibitor administration to provide a model of Parkinson’s disease in rats and monkeys. Ann Neurol 60:264–268

    Article  CAS  PubMed  Google Scholar 

  • Krishnan S, Chi EY, Wood SJ, Kendrick BS, Li C, Garzon-Rodriguez W, Wypych J, Randolph TW, Narhi LO, Biere AL, Citron M, Carpenter JF (2003) Oxidative dimer formation is the critical rate-limiting step for Parkinson’s disease alpha-synuclein fibrillogenesis. Biochemistry 42:829–837

    Article  CAS  PubMed  Google Scholar 

  • Lee G, Junn E, Tanaka M, Kim YM, Mouradian MM (2002) Synphilin-1 degradation by the ubiquitin-proteasome pathway and effects on cell survival. J Neurochem 83:346–352

    Article  CAS  PubMed  Google Scholar 

  • Li W, Lesuisse C, Xu Y, Troncoso JC, Price DL, Lee MK (2004) Stabilization of alpha-synuclein protein with aging and familial Parkinson’s disease-linked A53T mutation. J Neurosci 24:7400–7409

    Article  CAS  PubMed  Google Scholar 

  • Lindersson E, Beedholm R, Hojrup P, Moos T, Gai W, Hendil KB, Jensen PH (2004) Proteasomal inhibition by alpha-synuclein filaments and oligomers. J Biol Chem 279:12924–12934

    Article  CAS  PubMed  Google Scholar 

  • Maestre I, Jordan J, Calvo S, Reig JA, Cena V, Soria B, Prentki M, Roche E (2003) Mitochondrial dysfunction is involved in apoptosis induced by serum withdrawal and fatty acids in the beta-cell line Ins-1. Endocrinology 144:335–345

    Article  CAS  PubMed  Google Scholar 

  • Manning-Bog AB, Reaney SH, Chou VP, Johnston LC, McCormack AL, Johnston J, Langston JW, Di Monte DA (2006) Lack of nigrostriatal pathology in a rat model of proteasome inhibition. Ann Neurol 60:256–260

    Article  PubMed  Google Scholar 

  • Martin-Clemente B, Alvarez-Castelao B, Mayo I, Sierra AB, Diaz V, Milan M, Farinas I, Gomez-Isla T, Ferrer I, Castano JG (2004) Alpha-synuclein expression levels do not significantly affect proteasome function and expression in mice and stably transfected PC12 cell lines. J Biol Chem 279:52984–52990

    Article  CAS  PubMed  Google Scholar 

  • Mathur BN, Neely MD, Dyllick-Brenzinger M, Tandon A, Deutch AY (2007) Systemic administration of a proteasome inhibitor does not cause nigrostriatal dopamine degeneration. Brain Res 1168:83–89

    Article  CAS  PubMed  Google Scholar 

  • McNaught KS, Jenner P (2001) Proteasomal function is impaired in substantia nigra in Parkinson’s disease. Neurosci Lett 297:191–194

    Article  CAS  PubMed  Google Scholar 

  • McNaught KS, Olanow CW (2006) Proteasome inhibitor-induced model of Parkinson’s disease. Ann Neurol 60:243–247

    Article  PubMed  Google Scholar 

  • McNaught KS, Olanow CW, Halliwell B, Isacson O, Jenner P (2001) Failure of the ubiquitin–proteasome system in Parkinson’s disease. Nat Rev Neurosci 2:589–594

    Article  CAS  PubMed  Google Scholar 

  • McNaught KS, Bjorklund LM, Belizaire R, Isacson O, Jenner P, Olanow CW (2002a) Proteasome inhibition causes nigral degeneration with inclusion bodies in rats. Neuroreport 13:1437–1441

    Article  CAS  PubMed  Google Scholar 

  • McNaught KS, Mytilineou C, Jnobaptiste R, Yabut J, Shashidharan P, Jennert P, Olanow CW (2002b) Impairment of the ubiquitin–proteasome system causes dopaminergic cell death and inclusion body formation in ventral mesencephalic cultures. J Neurochem 81:301–306

    Article  CAS  PubMed  Google Scholar 

  • McNaught KS, Perl DP, Brownell AL, Olanow CW (2004) Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease. Ann Neurol 56:149–162

    Article  CAS  PubMed  Google Scholar 

  • Meiners S, Heyken D, Weller A, Ludwig A, Stangl K, Kloetzel PM, Kruger E (2003) Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of Mammalian proteasomes. J Biol Chem 278:21517–21525

    Article  CAS  PubMed  Google Scholar 

  • Monti B, Polazzi E, Batti L, Crochemore C, Virgili M, Contestabile A (2007) Alpha-synuclein protects cerebellar granule neurons against 6-hydroxydopamine-induced death. J Neurochem 103:518–530

    Article  CAS  PubMed  Google Scholar 

  • Okochi M, Walter J, Koyama A, Nakajo S, Baba M, Iwatsubo T, Meijer L, Kahle PJ, Haass C (2000) Constitutive phosphorylation of the Parkinson’s disease associated alpha-synuclein. J Biol Chem 275:390–397

    Article  CAS  PubMed  Google Scholar 

  • Ostrerova-Golts N, Petrucelli L, Hardy J, Lee JM, Farer M, Wolozin B (2000) The A53T alpha-synuclein mutation increases iron-dependent aggregation and toxicity. J Neurosci 20:6048–6054

    CAS  PubMed  Google Scholar 

  • Rideout HJ, Stefanis L (2002) Proteasomal inhibition-induced inclusion formation and death in cortical neurons require transcription and ubiquitination. Mol Cell Neurosci 21:223–238

    Article  CAS  PubMed  Google Scholar 

  • Rideout HJ, Larsen KE, Sulzer D, Stefanis L (2001) Proteasomal inhibition leads to formation of ubiquitin/alpha-synuclein-immunoreactive inclusions in PC12 cells. J Neurochem 78:899–908

    Article  CAS  PubMed  Google Scholar 

  • Snyder H, Mensah K, Theisler C, Lee J, Matouschek A, Wolozin B (2003) Aggregated and monomeric alpha-synuclein bind to the S6′ proteasomal protein and inhibit proteasomal function. J Biol Chem 278:11753–11759

    Article  CAS  PubMed  Google Scholar 

  • Souza JM, Giasson BI, Chen Q, Lee VM, Ischiropoulos H (2000) Dityrosine cross-linking promotes formation of stable alpha-synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. J Biol Chem 275:18344–18349

    Article  CAS  PubMed  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840

    Article  CAS  PubMed  Google Scholar 

  • Stefanis L, Larsen KE, Rideout HJ, Sulzer D, Greene LA (2001) Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J Neurosci 21:9549–9560

    CAS  PubMed  Google Scholar 

  • Sullivan PG, Dragicevic NB, Deng JH, Bai Y, Dimayuga E, Ding Q, Chen Q, Bruce-Keller AJ, Keller JN (2004) Proteasome inhibition alters neural mitochondrial homeostasis and mitochondria turnover. J Biol Chem 279:20699–20707

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Engelender S, Igarashi S, Rao RK, Wanner T, Tanzi RE, Sawa A, Dawson L, Dawson TM, Ross CA (2001) Inducible expression of mutant alpha-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis. Hum Mol Genet 10:919–926

    Article  CAS  PubMed  Google Scholar 

  • Tofaris GK, Razzaq A, Ghetti B, Lilley KS, Spillantini MG (2003) Ubiquitination of alpha-synuclein in Lewy bodies is a pathological event not associated with impairment of proteasome function. J Biol Chem 278:44405–44411

    Article  CAS  PubMed  Google Scholar 

  • Wislet-Gendebien S, D’Souza C, Kawarai T, George-Hyslop P, Westaway D, Fraser P, Tandon A (2006) Cytosolic proteins regulate alpha-synuclein dissociation from presynaptic membranes. J Biol Chem 281:32148–32155

    Article  CAS  PubMed  Google Scholar 

  • Zeng BY, Bukhatwa S, Hikima A, Rose S, Jenner P (2006) Reproducible nigral cell loss after systemic proteasomal inhibitor administration to rats. Ann Neurol 60:248–252

    Article  PubMed  Google Scholar 

  • Zhang NY, Tang Z, Liu CW (2008) Alpha-synuclein protofibrils inhibit 26S proteasome-mediated protein degradation understanding the cytotoxicity of protein protofibrils in neurodegenerative diseases pathogenesis. J Biol Chem 283:20288–20298

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Linda Wang for technical assistance. M. D.-B. acknowledges the Ernst Schering foundation and the Charité foundation for PhD scholarships. C. D. was supported by a fellowship from Canadian Institutes of Health Research. This work was supported by operating grants to AT from the Canadian Institutes of Health Research (MOP 64373 and MOP 84501) and Parkinson Society of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag Tandon.

Additional information

Melanie Dyllick-Brenzinger and Cheryl A. D’Souza have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyllick-Brenzinger, M., D’Souza, C.A., Dahlmann, B. et al. Reciprocal Effects of α-Synuclein Overexpression and Proteasome Inhibition in Neuronal Cells and Tissue. Neurotox Res 17, 215–227 (2010). https://doi.org/10.1007/s12640-009-9094-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-009-9094-1

Keywords

Navigation