Skip to main content

Advertisement

Log in

Metal Toxicity, Liver Disease and Neurodegeneration

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Hepatocerebral disorders are serious neuropsychiatric conditions that result from liver failure. These disorders are characterized neuropathologically by varying degrees of neuronal cell death in basal ganglia, cerebellum, and spinal cord, and include clinical entities such as Wilson’s Disease, post-shunt myelopathy, hepatic encephalopathy, and acquired non-Wilsonian hepatocerebral degeneration. Morphologic changes to astrocytes (Alzheimer type II astrocytosis) are a major feature of hepatocerebral disorders. Neurological symptoms include Parkinsonism, cognitive dysfunction, and ataxia. Pathophysiologic mechanisms responsible for cerebral dysfunction and neuronal cell death in hepatocerebral disorders include ammonia toxicity and neurotoxic effects of metals such as copper, manganese, and iron. Molecular mechanisms of neurotoxicity include oxidative/nitrosative stress, glutamate (NMDA)-receptor-mediated excitotoxicity, and neuroinflammatory mechanisms. However, neuronal cell death in hepatocerebral disorders is limited by adaptive mechanisms that may include NMDA-receptor down-regulation, the synthesis of neuroprotective steroids and hypothermia. Management and treatment of hepatocerebral disorders include chelation therapy (Wilson’s Disease), the use of ammonia-lowering agents (lactulose, antibiotics, ornithine aspartate) and liver transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahboucha S, Pomier-Layrargues G, Mamer O, Butterworth RF (2005) Increased brain concentrations of a neuroinhibitory steroid in human hepatic encephalopathy. Ann Neurol 58(1):169–170

    Article  CAS  PubMed  Google Scholar 

  • Aschner M, Gannon M, Kimelberg HK (1992) Manganese uptake and efflux in cultured rat astrocytes. J Neurochem 58(2):730–735

    Article  CAS  PubMed  Google Scholar 

  • Bechar M, Freud M, Kott E, Kott I, Kravvic H, Stern J, Sandbank U, Bornstein B (1970) Hepatic cirrhosis with post-shunt myelopathy. J Neurol Sci 11(2):101–107

    Article  CAS  PubMed  Google Scholar 

  • Butterworth RF (1993) Portal-systemic encephalopathy: a disorder of neuron-astrocytic metabolic trafficking. Dev Neurosci 15(3–5):313–319

    Article  CAS  PubMed  Google Scholar 

  • Butterworth RF (2007) Neuronal cell death in hepatic encephalopathy. Metab Brain Dis 22(3/4):309–320

    Article  PubMed  Google Scholar 

  • Butterworth RF, Giguère JF, Michaud J, Lavoie J, Pomier Layrargues G (1987) Ammonia: key factor in the pathogenesis of hepatic encephalopathy. Neurochem Pathol 6:1–12

    Article  CAS  PubMed  Google Scholar 

  • Butterworth RF, Spahr L, Fontaine S, Pomier Layrargues G (1995) Manganese toxicity, dopaminergic dysfunction and hepatic encephalopathy. Metab Brain Dis 4:259–267

    Article  Google Scholar 

  • Cumings JN (1948) The copper and iron content of brain and liver in the normal and in hepato-lenticular degeneration. Brain 71(4):410–415

    Article  CAS  PubMed  Google Scholar 

  • Cumings JN (1961) Soluble cerebral proteins in normal and oedematous brain. J Clin Pathol 14:289–294

    Article  CAS  PubMed  Google Scholar 

  • Drayer B, Burger P, Darwin R, Riederer S, Herfkens R, Johnson GA (1986) MRI of brain iron. Am J Roentgenol 147(1):103–110

    CAS  Google Scholar 

  • Eng SC, Taylor SL, Reyes V, Raaka S, Berger J, Kowdley KV (2005) Hepatic iron overload in alcoholic end-stage liver disease is associated with iron deposition in other organs in the absence of HFE-1 hemochromatosis. Liver Int 25(3):513–517

    Article  CAS  PubMed  Google Scholar 

  • Erikson KM, Aschner M (2006) Increased manganese uptake by primary astrocyte cultures with altered iron status is mediated primarily by divalent metal transporter. Neurotoxicology 27(1):125–130

    Article  CAS  PubMed  Google Scholar 

  • Felipo V, Butterworth RF (2002) Mitochondrial dysfunction in acute hyperammonemia. Neurochem Int 40(6):487–491

    Article  CAS  PubMed  Google Scholar 

  • Giguère JF, Hamel E, Butterworth RF (1992) Increased densities of binding sites for the “peripheral-type” benzodiazepine receptor ligand 3H-PK 11195 in rat brain following portacaval anastomosis. Brain Res 585:295–298

    Article  PubMed  Google Scholar 

  • Hazell AS, Norenberg MD (1997) Manganese decreases glutamate uptake in cultured astrocytes. Neurochem Res 22(12):1443–1447

    Article  CAS  PubMed  Google Scholar 

  • Hazell AS, Desjardins P, Butterworth RF (1999) Chronic exposure of primary astrocyte cultures to manganese results in increased binding sites for “peripheral-type” benzodiazepine receptor ligand 3H-PK 11195. Neurosci Lett 271:5–8

    Article  CAS  PubMed  Google Scholar 

  • Hazell AS, Normandin L, Norenberg MD, Kennedy G, Yi JH (2006) Alzheimer type II astrocytic changes following sub-acute exposure to manganese and its prevention by antioxidant treatment. Neurosci Lett 396(3):167–171

    Article  CAS  PubMed  Google Scholar 

  • Hitoshi S, Iwata M, Yoshikawa K (1991) Mid-brain pathology of Wilson’s disease: MRI analysis of three cases. J Neurol Neurosurg Psychiatry 54:624–626

    Article  CAS  PubMed  Google Scholar 

  • Kril JJ, Butterworth RF (1997) Diencephalic and cerebellar pathology in alcoholic and nonalcoholic patients with end-stage liver disease. Hepatology 26:837–841

    Article  CAS  PubMed  Google Scholar 

  • Kuwert T, Hefter H, Scholz D et al (1992) Regional cerebral glucose consumption measured by positron emission tomography in patients with Wilson’s disease. Neurology 41:272

    Google Scholar 

  • Lavoie J, Pomier Layrargues G, Butterworth RF (1990) Increased densities of “peripheral-type” benzodiazepine receptors in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy. Hepatology 11:874–878

    Article  CAS  PubMed  Google Scholar 

  • Mzhe’lskaia TI, Larskiĭ EG, Pashchenko LA, Gladkikh SP, Ivanova-Smolenskaia IA, Markova ED (1989) Analysis of trace elements of the brain and liver tissues in Wilson’s disease. Zh Nevropatol Psikhiatr Im S S Korsakova 89(7):69–73

    PubMed  Google Scholar 

  • Norenberg MD (1987) The role of astrocytes in hepatic encephalopathy. Neurochem Pathol 6(1–2):13–33

    Article  CAS  PubMed  Google Scholar 

  • Peterson C, Giguère JF, Cotman CW, Butterworth RF (1990) Selective loss of NMDA-sensitive 3H-glutamate binding sites in rat brain following portacaval anastomosis. J Neurochem 55:386–390

    Article  CAS  PubMed  Google Scholar 

  • Pomier-Layrargues G, Spahr L, Butterworth RF (1995) Increased manganese concentrations in pallidum of cirrhotic patients. Lancet 345(8951):735

    Article  CAS  PubMed  Google Scholar 

  • Reddy PV, Rao KV, Norenberg MD (2008) The mitochondrial permeability transition, and oxidative and nitrosative stress in the mechanism of copper toxicity in cultured neurons and astrocytes. Lab Invest 8(8):816–830

    Article  Google Scholar 

  • Rutledge JN, Hilal SK, Silver AJ, Defendini R, Fahn S (1987) Study of movement disorders and brain iron by MR. Am J Roentgenol 149(2):365–379

    CAS  Google Scholar 

  • Schaefer M, Roelofsen H, Wolters H, Hofmann WJ, Müller M, Kuipers F, Stremmel W, Vonk RJ (1999) Localization of the Wilson’s disease protein in human liver. Gastroenterology 117(6):1380–1385

    Article  CAS  PubMed  Google Scholar 

  • Scheline CT, Choi EH, Kin-Han JS, Dugan’ LL, Choi DW (2002) Cofactors of mitochondrial enzymes attenuate copper-induced death in vitro and in vivo. Ann Neurol 52:195–204

    Article  Google Scholar 

  • Schwarz J, Antonini A, Kraft E et al (1994) Treatment with D-penicillamine improves dopamine D2-receptor binding and T2-singal intensity in de novo Wilson’s disease. Nature 44:1079

    CAS  Google Scholar 

  • Soffer D, Sherman Y, Tur-Kaspa R, Eid A (1995) Acquired hepatocerebral degeneration in a liver transplant recipient. Acta Neuropathol 90:107–111

    Article  CAS  PubMed  Google Scholar 

  • Spahr L, Butterworth RF, Fontaine S, Bui L, Therrien G, Millette P, Lebrun L-H, Zayed J, Leblanc A, Pomier Layrargues G (1996) Increased blood manganese in cirrhotic patients: relationship to pallidal magnetic resonance signal hyperintensity and neurological symptoms. Hepatology 24:1116–1120

    Article  CAS  PubMed  Google Scholar 

  • Watt NT, Hooper NM (2000) The response of neurones and glial cells to elevated copper. Brain Res Bull 55:219–224

    Article  Google Scholar 

  • Yin Z, Aschner JL, dos Santos AP, Aschner M (2008) Mitochondrial-dependent manganese neurotoxicity in rat primary astrocyte cultures. Brain Res 1203:1–11

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger F. Butterworth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butterworth, R.F. Metal Toxicity, Liver Disease and Neurodegeneration. Neurotox Res 18, 100–105 (2010). https://doi.org/10.1007/s12640-010-9185-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-010-9185-z

Keywords

Navigation