Skip to main content

Advertisement

Log in

Toll-Like Receptor Tolerance as a Mechanism for Neuroprotection

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

It has been discovered recently that Toll-like receptors (TLRs) are key mediators of tissue injury in response to stroke. This revelation has identified a new target critical to understanding the underlying mechanisms of stroke injury and potential therapies. Much of the interest in TLRs centers around their ability to self-regulate—a process commonly referred to as “tolerance,” wherein prior exposure to low-level TLR activation induces protection against a subsequent challenge that would otherwise cause damage. This endogenous process has been exploited in the setting of stroke. Recent studies show that TLR pathways can be reprogrammed via prior exposure to TLR ligands, leading to decreased infarct size and improved neurological outcomes in response to ischemic injury. Efforts to understand the molecular mechanisms of TLR reprogramming have led to the identification of multiple routes of TLR regulation including inhibitors that target signaling mediators, microRNAs that suppress genes posttranscriptionally, and epigenetic changes in chromatin remodeling that affect global gene regulation. In this review, we discuss the role of TLRs in mediating injury due to stroke, evidence for TLR-preconditioning-induced TLR reprogramming in response to stroke, and possible mechanisms of TLR-induced neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jin MS, Lee JO. Structures of the Toll-like receptor family and its ligand complexes. Immunity. 2008;29(2):182–91.

    Article  CAS  PubMed  Google Scholar 

  2. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4(7):499–511.

    Article  CAS  PubMed  Google Scholar 

  3. Wang H, Li ZY, Wu HS, Wang Y, Jiang CF, Zheng QC, et al. Endogenous danger signals trigger hepatic ischemia/reperfusion injury through Toll-like receptor 4/nuclear factor-kappa B pathway. Chin Med J. 2007;120(6):509–14.

    CAS  PubMed  Google Scholar 

  4. Caso JR, Pradillo JM, Hurtado O, Lorenzo P, Moro MA, Lizasoain I. Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation. 2007;115(12):1599–608.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang B, Ramesh G, Uematsu S, Akira S, Reeves WB. TLR4 signaling mediates inflammation and tissue injury in nephrotoxicity. J Am Soc Nephrol. 2008;19(5):923–32.

    Article  CAS  PubMed  Google Scholar 

  6. Chong AJ, Shimamoto A, Hampton CR, Takayama H, Spring DJ, Rothnie CL, et al. Toll-like receptor 4 mediates ischemia/reperfusion injury of the heart. J Thorac Cardiovasc Surg. 2004;128(2):170–9.

    Article  CAS  PubMed  Google Scholar 

  7. Lee KM, Seong SY. Partial role of TLR4 as a receptor responding to damage-associated molecular pattern. Immunol Lett. 2009;125(1):31–9.

    Article  CAS  PubMed  Google Scholar 

  8. Erridge C. Endogenous ligands of TLR2 and TLR4: agonists or assistants? J Leukoc Biol. 2010;87:989–9.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464(7285):104–7.

    Article  CAS  PubMed  Google Scholar 

  10. Smiley ST, King JA, Hancock WW. Fibrinogen stimulates macrophage chemokine secretion through Toll-like receptor 4. J Immunol. 2001;167(5):2887–94.

    CAS  PubMed  Google Scholar 

  11. Huang J, Upadhyay UM, Tamargo RJ. Inflammation in stroke and focal cerebral ischemia. Surg Neurol. 2006;66(3):232–45.

    Article  PubMed  Google Scholar 

  12. Hill J, Gunion-Rinker L, Kulhanek D, Lessov N, Kim S, Clark W, et al. Temporal modulation of cytokine expression following focal cerebral ischemia in mice. Brain Res. 1999;820:45–54.

    Article  CAS  PubMed  Google Scholar 

  13. Saito K, Suyama K, Nishida K, Sei Y, Basile AS. Early increases in TNF alpha, IL6, and IL-1beta levels following transient cerebral ischemia in gerbil brain. Neurosci Lett. 1996;206:149–52.

    Article  CAS  PubMed  Google Scholar 

  14. Ock J, Jeong J, Choi WS, Lee WH, Kim SH, Kim IK, et al. Regulation of Toll-like receptor 4 expression and its signaling by hypoxia in cultured microglia. J Neurosci Res. 2007;85(9):1989–95.

    Article  CAS  PubMed  Google Scholar 

  15. Caso JR, Pradillo JM, Hurtado O, Leza JC, Moro MA, Lizasoain I. Toll-like receptor 4 is involved in subacute stress-induced neuroinflammation and in the worsening of experimental stroke. Stroke. 2008;39(4):1314–20.

    Article  CAS  PubMed  Google Scholar 

  16. Cao CX, Yang QW, Lv FL, Cui J, Fu HB, Wang JZ. Reduced cerebral ischemia-reperfusion injury in Toll-like receptor 4 deficient mice. Biochem Biophys Res Commun. 2007;353(2):509–14.

    Article  CAS  PubMed  Google Scholar 

  17. Hua F, Ma J, Ha T, Xia Y, Kelley J, Williams DL, et al. Activation of Toll-like receptor 4 signaling contributes to hippocampal neuronal death following global cerebral ischemia/reperfusion. J Neuroimmunol. 2007;190(1–2):101–11.

    Article  CAS  PubMed  Google Scholar 

  18. Ziegler G, Harhausen D, Schepers C, Hoffmann O, Rohr C, Prinz V, et al. TLR2 has a detrimental role in mouse transient focal cerebral ischemia. Biochem Biophys Res Commun. 2007;359(3):574–9.

    Article  CAS  PubMed  Google Scholar 

  19. Lehnardt S, Lehmann S, Kaul D, Tschimmel K, Hoffmann O, Cho S, et al. Toll-like receptor 2 mediates CNS injury in focal cerebral ischemia. J Neuroimmunol. 2007;190(1–2):28–33.

    Article  CAS  PubMed  Google Scholar 

  20. Broad A, Kirby JA, Jones DE. Toll-like receptor interactions: tolerance of MyD88-dependent cytokines but enhancement of MyD88-independent interferon-beta production. Immunology. 2007;120(1):103–11.

    Article  CAS  PubMed  Google Scholar 

  21. Biswas SK, Bist P, Dhillon MK, Kajiji T, Del Fresno C, Yamamoto M, et al. Role for MyD88-independent, TRIF pathway in lipid A/TLR4-induced endotoxin tolerance. J Immunol. 2007;179(6):4083–92.

    CAS  PubMed  Google Scholar 

  22. Rowland RT, Meng X, Cleveland JC, Meldrum DR, Harken AH, Brown JM. LPS-induced delayed myocardial adaptation enhances acute preconditioning to optimize postischemic cardiac function. Am J Physiol. 1997;272:H2708–15.

    CAS  PubMed  Google Scholar 

  23. Obermaier R, Drognitz O, Grub A, Dobschuetz Ev, Schareck W, Hopt UT, et al. Endotoxin preconditioning in pancreatic ischemia/reperfusion injury. Pancreas. 2003;27(3):e51–6.

    Article  PubMed  Google Scholar 

  24. Marsh B, Stevens SL, Packard AE, Gopalan B, Hunter B, Leung PY, et al. Systemic lipopolysaccharide protects the brain from ischemic injury by reprogramming the response of the brain to stroke: a critical role for IRF3. J Neurosci. 2009;29(31):9839–49.

    Article  CAS  PubMed  Google Scholar 

  25. Marsh B, Rosenzweig HL, Stevens SL, Hillary B, Gopalan B, Cannon W, et al. LPS induced preconditioning in the brain: a seminal role for NFkB in the establishment of tolerance to ischemic injury. Abstract, Society for Neuroscience Meeting, Washington, DC, 2005.

  26. Lastres-Becker I, Carmell T, Molina-Holgado F. Endotoxin preconditioning protects neurons from in vitro ischemia: role of endogenous IL-1beta and TNF-alpha. J Neuroimmunol. 2006;173:108–16.

    Article  CAS  PubMed  Google Scholar 

  27. Biswas SK, Lopez-Collazo E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol. 2009;30(10):475–87.

    Article  CAS  PubMed  Google Scholar 

  28. Bagchi A, Herrup EA, Warren HS, Trigilio J, Shin HS, Valentine C, et al. MyD88-dependent and MyD88-independent pathways in synergy, priming, and tolerance between TLR agonists. J Immunol. 2007;178(2):1164–71.

    CAS  PubMed  Google Scholar 

  29. Pradillo JM, Fernandez-Lopez D, Garcia-Yebenes I, Sobrado M, Hurtado O, Moro MA, et al. Toll-like receptor 4 is involved in neuroprotection afforded by ischemic preconditioning. J Neurochem. 2009;109(1):287–94.

    Article  CAS  PubMed  Google Scholar 

  30. Tasaki K, Ruetzler CA, Ohtsuki T, Martin D, Nawashiro H, Hallenbeck JM. Lipopolysaccharide pre-treatment induces resistance against subsequent focal cerebral ischemic damage in spontaneously hypertensive rats. Brain Res. 1997;748(1–2):267–70.

    Article  CAS  PubMed  Google Scholar 

  31. Furuya K, Ginis I, Takeda H, Chen Y, Hallenbeck J. Cell permeable exogenous ceramide reduces infarct size in spontaneously hypertensive rats supporting in vitro studies that have implicated ceramide in induction of tolerance to ischemia. J Cereb Blood Flow Metab. 2001;21:226–32.

    Article  CAS  PubMed  Google Scholar 

  32. Rosenzweig HL, Minami M, Lessov NS, Coste SC, Stevens SL, Henshall DC, et al. Endotoxin preconditioning protects against the cytotoxic effects of TNFa after stroke: a novel role for TNFa in LPS-ischemic tolerance. J Cereb Blood Flow Metab. 2007;27:1663–74.

    Article  CAS  PubMed  Google Scholar 

  33. Hua F, Ma J, Ha T, Kelley J, Williams DL, Kao RL, et al. Preconditioning with a TLR2 specific ligand increases resistance to cerebral ischemia/reperfusion injury. J Neuroimmunol. 2008;199(1–2):75–82.

    Article  CAS  PubMed  Google Scholar 

  34. Kraus J, Voigt K, Schuller AM, Scholz M, Kim KS, Schilling M, et al. Interferon-beta stabilizes barrier characteristics of the blood–brain barrier in four different species in vitro. Mult Scler (Houndmills, Basingstoke, England). 2008;14(6):843–52.

    Article  CAS  Google Scholar 

  35. Minagar A, Long A, Ma T, Jackson TH, Kelley RE, Ostanin DV, et al. Interferon (IFN)-beta 1a and IFN-beta 1b block IFN-gamma-induced disintegration of endothelial junction integrity and barrier. Endothelium. 2003;10(6):299–307.

    Article  CAS  PubMed  Google Scholar 

  36. Stevens SL, Ciesielski TM, Marsh BJ, Yang T, Homen DS, Boule JL, et al. Toll-like receptor 9: a new target of ischemic preconditioning in the brain. J Cereb Blood Flow Metab. 2008;28(5):1040–7.

    Article  CAS  PubMed  Google Scholar 

  37. Marsh BJ, Stevens SL, Hunter B, Stenzel-Poore MP. Inflammation and the emerging role of the Toll-like receptor system in acute brain ischemia. Stroke. 2009;40(3 Suppl):S34–7.

    Article  CAS  PubMed  Google Scholar 

  38. Kim PJ, Pai SY, Brigl M, Besra GS, Gumperz J, Ho IC. GATA-3 regulates the development and function of invariant NKT cells. J Immunol. 2006;177(10):6650–9.

    CAS  PubMed  Google Scholar 

  39. Blondeau N, Widmann C, Lazdunsk M, Heurteaux C. Activation of the nuclear factor-kappaB is a key event in brain tolerance. J Neurosci. 2001;21(13):4668–77.

    CAS  PubMed  Google Scholar 

  40. Cardenas A, Moro MA, Leza JC, O'Shea E, Davalos A, Castillo J, et al. Upregulation of TACE/ADAM17 after ischemic preconditioning is involved in brain tolerance. J Cereb Blood Flow Metab. 2002;22(11):1297–302.

    Article  CAS  PubMed  Google Scholar 

  41. Escoll P, del Fresno C, Garcia L, Valles G, Lendinez MJ, Arnalich F, et al. Rapid up-regulation of IRAK-M expression following a second endotoxin challenge in human monocytes and in monocytes isolated from septic patients. Biochem Biophys Res Commun. 2003;311(2):465–72.

    Article  CAS  PubMed  Google Scholar 

  42. van’t Veer C, van den Pangaart PS, van Zoelen MA, de Kruif M, Birjmohun RS, Stroes ES, et al. Induction of IRAK-M is associated with lipopolysaccharide tolerance in a human endotoxemia model. J Immunol. 2007;179(10):7110–20.

    Google Scholar 

  43. Mashima R, Saeki K, Aki D, Minoda Y, Takaki H, Sanada T, et al. FLN29, a novel interferon- and LPS-inducible gene acting as a negative regulator of Toll-like receptor signaling. J Biol Chem. 2005;280(50):41289–97.

    Article  CAS  PubMed  Google Scholar 

  44. Shi M, Deng W, Bi E, Mao K, Ji Y, Lin G, et al. TRIM30 alpha negatively regulates TLR-mediated NF-kappa B activation by targeting TAB2 and TAB3 for degradation. Nat Immunol. 2008;9(4):369–77.

    Article  CAS  PubMed  Google Scholar 

  45. Carty M, Goodbody R, Schroder M, Stack J, Moynagh PN, Bowie AG. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat Immunol. 2006;7(10):1074–81.

    Article  CAS  PubMed  Google Scholar 

  46. Palsson-McDermott EM, Doyle SL, McGettrick AF, Hardy M, Husebye H, Banahan K, et al. TAG, a splice variant of the adaptor TRAM, negatively regulates the adaptor MyD88-independent TLR4 pathway. Nat Immunol. 2009;10(6):579–86.

    Article  CAS  PubMed  Google Scholar 

  47. Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642–55.

    Article  CAS  PubMed  Google Scholar 

  48. Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A. 2006;103(33):12481–6.

    Article  CAS  PubMed  Google Scholar 

  49. Bazzoni F, Rossato M, Fabbri M, Gaudiosi D, Mirolo M, Mori L, et al. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc Natl Acad Sci U S A. 2009;106(13):5282–7.

    Article  CAS  PubMed  Google Scholar 

  50. Liu G, Friggeri A, Yang Y, Park YJ, Tsuruta Y, Abraham E. miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc Natl Acad Sci U S A. 2009;106(37):15819–24.

    Article  CAS  PubMed  Google Scholar 

  51. Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B, et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol. 2007;179(8):5082–9.

    CAS  PubMed  Google Scholar 

  52. Lusardi TA, Farr CD, Faulkner CL, Pignataro G, Yang T, Lan J, et al. Ischemic preconditioning regulates expression of microRNAs and a predicted target, MeCP2, in mouse cortex. J Cereb Blood Flow Metab. 2009;30(4):744–56.

    Article  PubMed  Google Scholar 

  53. Jeyaseelan K, Lim KY, Armugam A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke. 2008;39(3):959–66.

    Article  CAS  PubMed  Google Scholar 

  54. El Gazzar M, Liu T, Yoza BK, McCall CE. Dynamic and selective nucleosome repositioning during endotoxin tolerance. J Biol Chem. 2010;285(2):1259–71.

    Article  CAS  PubMed  Google Scholar 

  55. Foster SL, Hargreaves DC, Medzhitov R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature. 2007;447(7147):972–8.

    CAS  PubMed  Google Scholar 

  56. Johnston SC, Gress DR, Browner WS, Sidney S. Short-term prognosis after emergency department diagnosis of TIA. J Am Med Assoc. 2000;284(22):2901–6.

    Article  CAS  Google Scholar 

  57. McKhann GM, Grega MA, Borowicz Jr LM, Baumgartner WA, Selnes OA. Stroke and encephalopathy after cardiac surgery: an update. Stroke. 2006;37(2):562–71.

    Article  PubMed  Google Scholar 

  58. Bond R, Rerkasem K, Shearman CP, Rothwell PM. Time trends in the published risks of stroke and death due to endarterectomy for symptomatic carotid stenosis. Cerebrovasc Dis. 2004;18(1):37–46.

    Article  CAS  PubMed  Google Scholar 

  59. Bucerius J, Gummert JF, Borger MA, Walther T, Doll N, Onnasch JF, et al. Stroke after cardiac surgery: a risk factor analysis of 16,184 consecutive adult patients. Ann Thorac Surg. 2003;75(2):472–8.

    Article  PubMed  Google Scholar 

  60. Barber PA, Darby DG, Desmond PM, Gerraty RP, Yang Q, Li T, et al. Identification of major ischemic change. Diffusion-weighted imaging versus computed tomography. Stroke. 1999;30(10):2059–65.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support from the National Institute of Neurological Disorders and Stroke (NS062381). We would like to thank Tiffani Howard for the graphics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary P. Stenzel-Poore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vartanian, K.B., Stenzel-Poore, M.P. Toll-Like Receptor Tolerance as a Mechanism for Neuroprotection. Transl. Stroke Res. 1, 252–260 (2010). https://doi.org/10.1007/s12975-010-0033-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-010-0033-5

Keywords

Navigation