Skip to main content

Advertisement

Log in

Astroglial Proteins as Diagnostic Markers of Acute Intracerebral Hemorrhage—Pathophysiological Background and Clinical Findings

  • Review
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

The time span from symptom onset to treatment initiation remains a critical variable determining the efficacy of thrombolysis in acute ischemic stroke. To date, performing a brain scan is indispensable prior to therapy in order to differentiate between patients with ischemic stroke and those with intracerebral hemorrhage (ICH). This causes substantial treatment delay, as thrombolysis cannot be applied prior to hospital admission at much earlier time points. Recently, brain-specific astroglial proteins (i.e., glial fibrillary acidic protein (GFAP), S100B) were identified to be released rapidly from the cytoplasm of destroyed cells in case of acute ICH. Elevated serum concentrations were found within the first 6 h after ICH onset. In contrast, in ischemic stroke, these proteins are released with delay, mirroring the more gradual occurrence of necrotic cell death and blood brain barrier disruption. S100B and GFAP may qualify as candidate serum biomarkers which are able to differentiate between ischemic stroke and ICH in the emergency phase of stroke. This minireview enlightens the pathophysiological background of this finding and provides an overview on currently available clinical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adams Jr HP, del Zoppo G, Alberts MJ, Bhatt DL, Brass L, Furlan A, et al. Guidelines for the early management of adults with ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: the American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Stroke. 2007;38(5):1655–711.

    Article  PubMed  Google Scholar 

  2. Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359(13):1317–29.

    Article  CAS  PubMed  Google Scholar 

  3. Marler JR, Goldstein LB. Medicine. Stroke—tPA and the clinic. Science. 2003;301(5640):1677.

    Article  CAS  PubMed  Google Scholar 

  4. Delcourt C, Huang Y, Wang J, Heeley E, Lindley R, Stapf C, et al. The second (main) phase of an open, randomised, multicentre study to investigate the effectiveness of an intensive blood pressure reduction in acute cerebral haemorrhage trial (INTERACT2). Int J Stroke. 2010;5(2):110–6.

    Article  CAS  PubMed  Google Scholar 

  5. Aguilar MI, Hart RG, Kase CS, Freeman WD, Hoeben BJ, Garcia RC, et al. Treatment of warfarin-associated intracerebral hemorrhage: literature review and expert opinion. Mayo Clin Proc. 2007;82(1):82–92.

    Article  CAS  PubMed  Google Scholar 

  6. Mayer SA, Brun NC, Begtrup K, Broderick J, Davis S, Diringer MN, et al. Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med. 2008;358(20):2127–37.

    Article  CAS  PubMed  Google Scholar 

  7. Dvorak F, Haberer I, Sitzer M, Foerch C. Characterisation of the diagnostic window of serum glial fibrillary acidic protein for the differentiation of intracerebral haemorrhage and ischaemic stroke. Cerebrovasc Dis. 2009;27(1):37–41.

    Article  CAS  PubMed  Google Scholar 

  8. Foerch C, Curdt I, Yan B, Dvorak F, Hermans M, Berkefeld J, et al. Serum glial fibrillary acidic protein as a biomarker for intracerebral haemorrhage in patients with acute stroke. J Neurol Neurosurg Psychiatry. 2006;77(2):181–4.

    Article  CAS  PubMed  Google Scholar 

  9. Foerch C, Montaner J, Furie KL, Ning MM, Lo EH. Invited article: searching for oracles? Blood biomarkers in acute stroke. Neurology. 2009;73(5):393–9.

    Article  CAS  PubMed  Google Scholar 

  10. Li Y, Powers C, Jiang N, Chopp M. Intact, injured, necrotic and apoptotic cells after focal cerebral ischemia in the rat. J Neurol Sci. 1998;156(2):119–32.

    Article  CAS  PubMed  Google Scholar 

  11. Unal-Cevik I, Kilinc M, Can A, Gursoy-Ozdemir Y, Dalkara T. Apoptotic and necrotic death mechanisms are concomitantly activated in the same cell after cerebral ischemia. Stroke. 2004;35(9):2189–94.

    Article  PubMed  Google Scholar 

  12. Charriaut-Marlangue C, Margaill I, Represa A, Popovici T, Plotkine M, Ben-Ari Y. Apoptosis and necrosis after reversible focal ischemia: an in situ DNA fragmentation analysis. J Cereb Blood Flow Metab. 1996;16(2):186–94.

    Article  CAS  PubMed  Google Scholar 

  13. Li Y, Chopp M, Jiang N, Zhang ZG, Zaloga C. Induction of DNA fragmentation after 10 to 120 minutes of focal cerebral ischemia in rats. Stroke. 1995;26(7):1252–7. discussion 7–8.

    CAS  PubMed  Google Scholar 

  14. Li Y, Sharov VG, Jiang N, Zaloga C, Sabbah HN, Chopp M. Ultrastructural and light microscopic evidence of apoptosis after middle cerebral artery occlusion in the rat. Am J Pathol. 1995;146(5):1045–51.

    CAS  PubMed  Google Scholar 

  15. Syntichaki P, Tavernarakis N. Death by necrosis. Uncontrollable catastrophe, or is there order behind the chaos? EMBO Rep. 2002;3(7):604–9.

    Article  CAS  PubMed  Google Scholar 

  16. Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways. Nat Cell Biol. 2001;3(11):E255–63.

    Article  CAS  PubMed  Google Scholar 

  17. Nicotera P, Leist M, Manzo L. Neuronal cell death: a demise with different shapes. Trends Pharmacol Sci. 1999;20(2):46–51.

    Article  CAS  PubMed  Google Scholar 

  18. Walker NI, Harmon BV, Gobe GC, Kerr JF. Patterns of cell death. Meth Achiev Exp Pathol. 1988;13:18–54.

    CAS  Google Scholar 

  19. Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia—the ischemic penumbra. Stroke. 1981;12(6):723–5.

    CAS  PubMed  Google Scholar 

  20. Kaufmann AM, Firlik AD, Fukui MB, Wechsler LR, Jungries CA, Yonas H. Ischemic core and penumbra in human stroke. Stroke. 1999;30(1):93–9.

    CAS  PubMed  Google Scholar 

  21. Garcia JH, Liu KF, Ho KL. Neuronal necrosis after middle cerebral artery occlusion in Wistar rats progresses at different time intervals in the caudoputamen and the cortex. Stroke. 1995;26(4):636–42. discussion 43.

    CAS  PubMed  Google Scholar 

  22. Persson L, Hardemark HG, Bolander HG, Hillered L, Olsson Y. Neurologic and neuropathologic outcome after middle cerebral artery occlusion in rats. Stroke. 1989;20(5):641–5.

    CAS  PubMed  Google Scholar 

  23. Chen H, Chopp M, Schultz L, Bodzin G, Garcia JH. Sequential neuronal and astrocytic changes after transient middle cerebral artery occlusion in the rat. J Neurol Sci. 1993;118(2):109–16.

    Article  CAS  PubMed  Google Scholar 

  24. Gurer G, Gursoy-Ozdemir Y, Erdemli E, Can A, Dalkara T. Astrocytes are more resistant to focal cerebral ischemia than neurons and die by a delayed necrosis. Brain Pathology (Zurich, Switzerland). 2009;19(4):630–41.

    CAS  Google Scholar 

  25. Panickar KS, Norenberg MD. Astrocytes in cerebral ischemic injury: morphological and general considerations. Glia. 2005;50(4):287–98.

    Article  PubMed  Google Scholar 

  26. Petito CK, Morgello S, Felix JC, Lesser ML. The two patterns of reactive astrocytosis in postischemic rat brain. J Cereb Blood Flow Metab. 1990;10(6):850–9.

    CAS  PubMed  Google Scholar 

  27. Donato R. Intracellular and extracellular roles of S100 proteins. Microsc Res Tech. 2003;60(6):540–51.

    Article  CAS  PubMed  Google Scholar 

  28. Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol. 2001;33(7):637–68.

    Article  CAS  PubMed  Google Scholar 

  29. Snyder-Ramos SA, Gruhlke T, Bauer H, Bauer M, Luntz AP, Motsch J, et al. Cerebral and extracerebral release of protein S100B in cardiac surgical patients. Anaesthesia. 2004;59(4):344–9.

    Article  CAS  PubMed  Google Scholar 

  30. Foerch C, Singer OC, Neumann-Haefelin T, du Mesnil de Rochemont R, Steinmetz H, Sitzer M. Evaluation of serum S100B as a surrogate marker for long-term outcome and infarct volume in acute middle cerebral artery infarction. Arch Neurol. 2005;62(7):1130–4.

    Article  PubMed  Google Scholar 

  31. Missler U, Wiesmann M, Friedrich C, Kaps M. S-100 protein and neuron-specific enolase concentrations in blood as indicators of infarction volume and prognosis in acute ischemic stroke. Stroke. 1997;28(10):1956–60.

    CAS  PubMed  Google Scholar 

  32. Jauch EC, Lindsell C, Broderick J, Fagan SC, Tilley BC, Levine SR. Association of serial biochemical markers with acute ischemic stroke: the National Institute of Neurological Disorders and Stroke recombinant tissue plasminogen activator Stroke Study. Stroke. 2006;37(10):2508–13.

    Article  CAS  PubMed  Google Scholar 

  33. Foerch C, Otto B, Singer OC, Neumann-Haefelin T, Yan B, Berkefeld J, et al. Serum S100B predicts a malignant course of infarction in patients with acute middle cerebral artery occlusion. Stroke. 2004;35(9):2160–4.

    Article  CAS  PubMed  Google Scholar 

  34. Hacke W, Schwab S, Horn M, Spranger M, De Georgia M, von Kummer R. ‘Malignant’ middle cerebral artery territory infarction: clinical course and prognostic signs. Arch Neurol. 1996;53(4):309–15.

    CAS  PubMed  Google Scholar 

  35. Foerch C, du MesnildeRochemont R, Singer O, Neumann-Haefelin T, Buchkremer M, Zanella FE, et al. S100B as a surrogate marker for successful clot lysis in hyperacute middle cerebral artery occlusion. J Neurol Neurosurg Psychiatry. 2003;74(3):322–5.

    Article  CAS  PubMed  Google Scholar 

  36. Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res. 2000;25(9–10):1439–51.

    Article  CAS  PubMed  Google Scholar 

  37. Foerch C, Singer O, Neumann-Haefelin T, Raabe A, Sitzer M. Utility of serum GFAP in monitoring acute MCA territorial infarction. Cerebrovasc Dis. 2003;16 Suppl 4:45.

    Google Scholar 

  38. Unden J, Strandberg K, Malm J, Campbell E, Rosengren L, Stenflo J, et al. Explorative investigation of biomarkers of brain damage and coagulation system activation in clinical stroke differentiation. J Neurol. 2009;256(1):72–7.

    Article  CAS  PubMed  Google Scholar 

  39. Herrmann M, Vos P, Wunderlich MT, de Bruijn CH, Lamers KJ. Release of glial tissue-specific proteins after acute stroke: a comparative analysis of serum concentrations of protein S-100B and glial fibrillary acidic protein. Stroke. 2000;31(11):2670–7.

    CAS  PubMed  Google Scholar 

  40. Wunderlich MT, Wallesch CW, Goertler M. Release of glial fibrillary acidic protein is related to the neurovascular status in acute ischemic stroke. Eur J Neurol. 2006;13(10):1118–23.

    Article  CAS  PubMed  Google Scholar 

  41. Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, Hanley DF. Spontaneous intracerebral hemorrhage. N Engl J Med. 2001;344(19):1450–60.

    Article  CAS  PubMed  Google Scholar 

  42. Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5(1):53–63.

    Article  PubMed  Google Scholar 

  43. Qureshi AI, Ling GS, Khan J, Suri MF, Miskolczi L, Guterman LR, et al. Quantitative analysis of injured, necrotic, and apoptotic cells in a new experimental model of intracerebral hemorrhage. Crit Care Med. 2001;29(1):152–7.

    Article  CAS  PubMed  Google Scholar 

  44. Qureshi AI, Suri MF, Ostrow PT, Kim SH, Ali Z, Shatla AA, et al. Apoptosis as a form of cell death in intracerebral hemorrhage. Neurosurgery. 2003;52(5):1041–7. discussion 7–8.

    Article  PubMed  Google Scholar 

  45. Wang J, Dore S. Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab. 2007;27(5):894–908.

    CAS  PubMed  Google Scholar 

  46. Wasserman JK, Zhu X, Schlichter LC. Evolution of the inflammatory response in the brain following intracerebral hemorrhage and effects of delayed minocycline treatment. Brain Res. 2007;1180:140–54.

    Article  CAS  PubMed  Google Scholar 

  47. del Zoppo GJ. Stroke and neurovascular protection. N Engl J Med. 2006;354:553–5.

    Article  PubMed  Google Scholar 

  48. Delgado P, Alvarez Sabin J, Santamarina E, Molina CA, Quintana M, Rosell A, et al. Plasma S100B level after acute spontaneous intracerebral hemorrhage. Stroke. 2006;37(11):2837–9.

    Article  CAS  PubMed  Google Scholar 

  49. Hu YY, Dong XQ, Yu WH, Zhang ZY. Change in plasma S100B level after acute spontaneous basal ganglia hemorrhage. Shock. 2010;33(2):134–40.

    Article  CAS  PubMed  Google Scholar 

  50. Delgado P, Alvarez-Sabin J, Ribó M, Purroy F, Rossell A, Penalba A, et al. Differentiating ischemic and hemorrhagic stroke by means of a panel of plasma biomarkers. Oral Presentation, 2005 European Stroke Conference, Bologna, Italy. 2005.

  51. Marchi N, Cavaglia M, Fazio V, Bhudia S, Hallene K, Janigro D. Peripheral markers of blood–brain barrier damage. Clin Chim Acta. 2004;342(1–2):1–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosures

Christian Foerch is designated as an inventor in the following European patent application: “Use of GFAP for identification of intracerebral haemorrhage” (patent application number 03021571.9; date of filing: 24 September 2003). Robert Brunkhorst and Waltraud Pfeilschifter declare to have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Foerch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunkhorst, R., Pfeilschifter, W. & Foerch, C. Astroglial Proteins as Diagnostic Markers of Acute Intracerebral Hemorrhage—Pathophysiological Background and Clinical Findings. Transl. Stroke Res. 1, 246–251 (2010). https://doi.org/10.1007/s12975-010-0040-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-010-0040-6

Keywords

Navigation