Skip to main content
Log in

The Distribution of Fluid Shear Stresses in Capillary Sprouts

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Fluid shear stress has been implicated as a regulator of sprouting angiogenesis. However, whether endothelial cells within capillary sprouts in vivo experience physiologically relevant shear stresses remains unclear. The objective of our study is to estimate the shear stress distribution along the length of a capillary sprout through computational modeling of blood flow in a blind-ended channel branching off a host vessel. In this model, we use sprout geometries typical for the rat mesenteric microvasculature and consider three types of boundary conditions: (1) a non-permeable vessel wall, (2) a uniformly permeable vessel wall, and (3) a non-permeable vessel wall with open slots (representative of endothelial clefts). Our numerical simulation predicts that for each boundary condition a local maximum shear stress (13.9, 8.9, and 13.3 dyne cm−2, respectively) occurs at the entrance of a 50 μm long, 6 μm diameter sprout branching at 90° off of a 11 μm diameter host vessel. The shear stress dropped below 0.2 dyne cm−2, a threshold for endothelial cell activation, within 4.1 μm of the entrance for the non-permeable wall case and 4.2 μm for the uniformly permeable wall case. Shear stress magnitudes within the sprout were above 0.2 dyne cm−2 for longer sprout scenarios and peaked at 5.9 dyne cm−2 at endothelial cell clefts. These results provide a first estimate of relative fluid shear stress magnitudes along a capillary sprout and highlight the importance of investigating endothelial cell responses to flow conditions during angiogenesis in tumors and other altered microenvironments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Anderson, C. R., A. M. Ponce, and R. J. Price. Immunohistochemical identification of an extracellular matrix scaffold that microguides capillary sprouting in vivo. J. Histochem. Cytochem. 52:1063–1072, 2004.

    Article  Google Scholar 

  2. Barber, J. O., J. P. Alberding, J. M. Restrepo, and T. W. Secomb. Simulated two-dimensional red blood cell motion, deformation, and partitioning in microvessel bifurcations. Ann. Biomed. Eng. 36:1690–1698, 2008.

    Article  Google Scholar 

  3. Bates, D. O. The chronic effect of vascular endothelial growth factor on individually perfused frog mesenteric microvessels. J. Physiol. 513(Pt 1):225–233, 1998.

    Article  Google Scholar 

  4. Chen, B. P., Y. S. Li, Y. Zhao, K. D. Chen, S. Li, J. Lao, S. Yuan, J. Y. Shyy, and S. Chien. DNA microarray analysis of gene expression in endothelial cells in response to 24-h shear stress. Physiol. Genomics 7:55–63, 2001.

    Article  Google Scholar 

  5. Cooke, J. P., E. Rossitch, Jr., N. A. Andon, J. Loscalzo, and V. J. Dzau. Flow activates an endothelial potassium channel to release an endogenous nitrovasodilator. J. Clin. Invest. 88:1663–1671, 1991.

    Article  Google Scholar 

  6. Dai, G., M. R. Kaazempur-Mofrad, S. Natarajan, Y. Zhang, S. Vaughn, B. R. Blackman, R. D. Kamm, G. Garcia-Cardena, and M. A. Gimbrone, Jr. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc. Natl Acad. Sci. USA 101:14871–14876, 2004.

    Article  Google Scholar 

  7. Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75:519–560, 1995.

    Google Scholar 

  8. Davies, P. F., A. Remuzzi, E. J. Gordon, C. F. Dewey, Jr., and M. A. Gimbrone, Jr. Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc. Natl Acad. Sci. USA 83:2114–2117, 1986.

    Article  Google Scholar 

  9. Davies, P. F., A. Robotewskyj, and M. L. Griem. Quantitative studies of endothelial cell adhesion. Directional remodeling of focal adhesion sites in response to flow forces. J. Clin. Invest. 93:2031–2038, 1994.

    Article  Google Scholar 

  10. DePaola, N., M. A. Gimbrone, Jr., P. F. Davies, and C. F. Dewey, Jr. Vascular endothelium responds to fluid shear stress gradients. Arterioscler. Thromb. 12:1254–1257, 1992.

    Google Scholar 

  11. Dewey, Jr., C. F., S. R. Bussolari, M. A. Gimbrone, Jr., and P. F. Davies. The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Eng. 103:177–185, 1981.

    Article  Google Scholar 

  12. Evans, E., and Y. C. Fung. Improved measurements of the erythrocyte geometry. Microvasc. Res. 4:335–347, 1972.

    Article  Google Scholar 

  13. Fraser, P. A., L. H. Smaje, and A. Verrinder. Microvascular pressures and filtration coefficients in the cat mesentery. J. Physiol. 283:439–456, 1978.

    Google Scholar 

  14. Fukumura, D., D. G. Duda, L. L. Munn, and R. K. Jain. Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models. Microcirculation 17:206–225, 2010.

    Article  Google Scholar 

  15. Fung, Y. C. Mechanics of erythrocytes, leukocytes, and other cells. In: Biomechanics Mechanical Properties of Living Tissues Anonymous New York. New York: Springer Science + Business Media, LLC, 1993, pp. 109–164.

  16. Galbraith, C. G., R. Skalak, and S. Chien. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil. Cytoskeleton 40:317–330, 1998.

    Article  Google Scholar 

  17. Gerhardt, H. VEGF and endothelial guidance in angiogenic sprouting. Organogenesis 4:241–246, 2008.

    Article  Google Scholar 

  18. Gerhardt, H., M. Golding, M. Fruttiger, C. Ruhrberg, A. Lundkvist, A. Abramsson, M. Jeltsch, C. Mitchell, K. Alitalo, D. Shima, and C. Betsholtz. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161:1163–1177, 2003.

    Article  Google Scholar 

  19. Guerreiro-Lucas, L. A., S. R. Pop, M. J. Machado, Y. L. Ma, S. L. Waters, G. Richardson, K. Saetzler, O. E. Jensen, and C. A. Mitchell. Experimental and theoretical modelling of blind-ended vessels within a developing angiogenic plexus. Microvasc. Res. 76:161–168, 2008.

    Article  Google Scholar 

  20. Hahn, C., and M. A. Schwartz. Mechanotransduction in vascular physiology and atherogenesis. Nat. Rev. Mol. Cell Biol. 10:53–62, 2009.

    Article  Google Scholar 

  21. le Noble, F., D. Moyon, L. Pardanaud, L. Yuan, V. Djonov, R. Matthijsen, C. Breant, V. Fleury, and A. Eichmann. Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development 131:361–375, 2004.

    Article  Google Scholar 

  22. Lin, K., P. P. Hsu, B. P. Chen, S. Yuan, S. Usami, J. Y. Shyy, Y. S. Li, and S. Chien. Molecular mechanism of endothelial growth arrest by laminar shear stress. Proc. Natl Acad. Sci. USA 97:9385–9389, 2000.

    Article  Google Scholar 

  23. Milkiewicz, M., M. D. Brown, S. Egginton, and O. Hudlicka. Association between shear stress, angiogenesis, and VEGF in skeletal muscles in vivo. Microcirculation 8:229–241, 2001.

    Google Scholar 

  24. Mitsumata, M., R. S. Fishel, R. M. Nerem, R. W. Alexander, and B. C. Berk. Fluid shear stress stimulates platelet-derived growth factor expression in endothelial cells. Am. J. Physiol. 265:H3–H8, 1993.

    Google Scholar 

  25. Murfee, W. L., M. R. Rehorn, S. M. Peirce, and T. C. Skalak. Perivascular cells along venules upregulate NG2 expression during microvascular remodeling. Microcirculation 13:261–273, 2006.

    Article  Google Scholar 

  26. Neal, C. R., and C. C. Michel. Differing effects of Vascular Endothelial Growth Factor (VEGF) on the ultrastructure of mesenteric microvessels of frog and rat. J. Physiol. 506:24P, 1998.

    Google Scholar 

  27. Pries, A. R., T. W. Secomb, and P. Gaehtgens. Relationship between structural and hemodynamic heterogeneity in microvascular networks. Am. J. Physiol. 270:H545–H553, 1996.

    Google Scholar 

  28. Rhodin, J. A., and H. Fujita. Capillary growth in the mesentery of normal young rats. Intravital video and electron microscope analyses. J. Submicrosc. Cytol. Pathol. 21:1–34, 1989.

    Google Scholar 

  29. Schmid-Schonbein, G. W., R. Skalak, S. Usami, and S. Chien. Cell distribution in capillary networks. Microvasc. Res. 19:18–44, 1980.

    Article  Google Scholar 

  30. Secomb, T. W., R. Skalak, N. Ozkaya, and J. F. Gross. Flow of axisymmetric red blood cells in narrow capillaries. J. Fluid Mech. 163:405–423, 1986.

    Article  Google Scholar 

  31. Shankar, P. N., and M. D. Deshpande. Fluid mechanics in the driven cavity. Annu. Rev. Fluid Mech. 32:93–136, 2000.

    Article  MathSciNet  Google Scholar 

  32. Shevkoplyas, S. S., T. Yoshida, S. C. Gifford, and M. W. Bitensky. Direct measurement of the impact of impaired erythrocyte deformability on microvascular network perfusion in a microfluidic device. Lab. Chip. 6:914–920, 2006.

    Article  Google Scholar 

  33. Skalak, T. C., and R. J. Price. The role of mechanical stresses in microvascular remodeling. Microcirculation 3:143–165, 1996.

    Article  Google Scholar 

  34. Sugihara-Seki, M., and R. Skalak. Numerical study of asymmetric flows of red blood cells in capillaries. Microvasc. Res. 36:64–74, 1988.

    Article  Google Scholar 

  35. Tarbell, J. M., L. Demaio, and M. M. Zaw. Effect of pressure on hydraulic conductivity of endothelial monolayers: role of endothelial cleft shear stress. J. Appl. Physiol. 87:261–268, 1999.

    Google Scholar 

  36. Tardy, Y., N. Resnick, T. Nagel, M. A. Gimbrone, Jr., and C. F. Dewey, Jr. Shear stress gradients remodel endothelial monolayers in vitro via a cell proliferation-migration-loss cycle. Arterioscler. Thromb. Vasc. Biol. 17:3102–3106, 1997.

    Google Scholar 

  37. Tözeren, H., and R. Skalak. The steady flow of closely fitting incompressible elastic spheres in a tube. J. Fluid Mech. 87:1–16, 1978.

    Article  MATH  Google Scholar 

  38. Wang, H., and R. Skalak. Viscous flow in a cylindrical tube containing a line of spherical particles. J. Fluid Mech. 38:75–96, 1969.

    Article  MATH  Google Scholar 

  39. Xiong, W., and J. Zhang. Shear stress variation induced by red blood cell motion in microvessel. Ann. Biomed. Eng. 38:2649–2659, 2010.

    Article  Google Scholar 

  40. Fung, Y. C. Microcirculation. In: Biomechanics: Circulation Anonymous New York. New York: Springer Science + Business Media, LLC, 1997, pp. 266–332.

Download references

Acknowledgments

This work was supported by Louisiana Board of Regents grants LEQSF(2007-12)-ENH-PKSFI-PRS-01 (D. Khismatullin) and LEQSF(2009-12)-RD-A-19 (W. Murfee).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damir B. Khismatullin.

Additional information

Associate Editor Laura Suggs oversaw the review of this article.

P. C. Stapor and W. Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stapor, P.C., Wang, W., Murfee, W.L. et al. The Distribution of Fluid Shear Stresses in Capillary Sprouts. Cardiovasc Eng Tech 2, 124–136 (2011). https://doi.org/10.1007/s13239-011-0041-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-011-0041-y

Keywords

Navigation