Skip to main content

Advertisement

Log in

Laminin-derived peptide AG73 regulates migration, invasion, and protease activity of human oral squamous cell carcinoma cells through syndecan-1 and β1 integrin

  • Research Article
  • Published:
Tumor Biology

Abstract

Squamous cell carcinoma is a prevalent head and neck tumor with high mortality. We studied the role played by laminin α1 chain peptide AG73 on migration, invasion, and protease activity of cells (OSCC) from human oral squamous cell carcinoma. Immunohistochemistry and immunofluorescence analyzed expression of laminin α1 chain and MMP9 in oral squamous cells carcinoma in vivo and in vitro. Migratory activity of AG73-treated OSCC cells was investigated by monolayer wound assays and in chemotaxis chambers. AG73-induced invasion was assessed in Boyden chambers. Invasion depends on MMPs. Conditioned media from cells grown on AG73 was subjected to zymography. We searched for AG73 receptors related to these activities in OSCC cells. Immunofluorescence analyzed AG73-induced colocalization of syndecan-1 and β1 integrin. Cells had these receptors silenced by siRNA, followed by treatment with AG73 and analysis of migration, invasion, and protease activity. Oral squamous cell carcinoma expresses laminin α1 chain and MMP9. OSCC cells treated with AG73 showed increased migration, invasion, and protease activity. AG73 induced colocalization of syndecan-1 and β1 integrin. Knockdown of these receptors decreased AG73-dependent migration, invasion, and protease activity. Syndecan-1 and β1 integrin signaling downstream of AG73 regulate migration, invasion, and MMP production by OSCC cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. McDowell JD. An overview of epidemiology and common risk factors for oral squamous cell carcinoma. Otolaryngol Clin North Am. 2006;39:277–94.

    Article  PubMed  Google Scholar 

  2. Mehrotra R, Yadav S. Oral squamous cell carcinoma: etiology, pathogenesis and prognostic value of genomic alterations. Indian J Cancer. 2006;43:60–6.

    Article  CAS  PubMed  Google Scholar 

  3. Bsoul SA, Huber MA, Terezhalmy GT. Squamous cell carcinoma of the oral tissues: a comprehensive review for oral healthcare providers. J Contemp Dent Pract. 2005;6:1–16.

    Google Scholar 

  4. Atula T, Hedstrom J, Finne P, Leivo I, Markkanen-Leppanen M, Haglund C. Tenascin-c expression and its prognostic significance in oral and pharyngeal squamous cell carcinoma. Anticancer Res. 2003;23:3051–6.

    CAS  PubMed  Google Scholar 

  5. de Vicente JC, Fresno MF, Villalain L, Vega JA, Lopez Arranz JS. Immunoexpression and prognostic significance of timp-1 and -2 in oral squamous cell carcinoma. Oral Oncol. 2005;41:568–79.

    Article  PubMed  Google Scholar 

  6. Kellermann MG, Sobral LM, da Silva SD, Zecchin KG, Graner E, Lopes MA, et al. Myofibroblasts in the stroma of oral squamous cell carcinoma are associated with poor prognosis. Histopathology. 2007;51:849–53.

    Article  CAS  PubMed  Google Scholar 

  7. Comoglio PM, Trusolino L. Cancer: the matrix is now in control. Nat Med. 2005;11:1156–9.

    Article  CAS  PubMed  Google Scholar 

  8. Kleinman HK, Weeks BS, Schnaper HW, Kibbey MC, Yamamura K, Grant DS. The laminins: a family of basement membrane glycoproteins important in cell differentiation and tumor metastases. Vitam Horm. 1993;47:161–86.

    Article  CAS  PubMed  Google Scholar 

  9. Capuano AC, Jaeger RG. The effect of laminin and its peptide sikvav on a human salivary gland myoepithelioma cell line. Oral Oncol. 2004;40:36–42.

    Article  CAS  PubMed  Google Scholar 

  10. de Oliveira PT, Jaeger MM, Miyagi SP, Jaeger RG. The effect of a reconstituted basement membrane (matrigel) on a human salivary gland myoepithelioma cell line. Virchows Arch. 2001;439:571–8.

    Article  PubMed  Google Scholar 

  11. Freitas VM, Jaeger RG. The effect of laminin and its peptide sikvav on a human salivary gland adenoid cystic carcinoma cell line. Virchows Arch. 2002;441:569–76.

    Article  CAS  PubMed  Google Scholar 

  12. Freitas VM, Scheremeta B, Hoffman MP, Jaeger RG. Laminin-1 and sikvav a laminin-1-derived peptide, regulate the morphology and protease activity of a human salivary gland adenoid cystic carcinoma cell line. Oral Oncol. 2004;40:483–9.

    Article  CAS  PubMed  Google Scholar 

  13. Freitas VM, Vilas-Boas VF, Pimenta DC, Loureiro V, Juliano MA, Carvalho MR, et al. Sikvav, a laminin alpha1-derived peptide, interacts with integrins and increases protease activity of a human salivary gland adenoid cystic carcinoma cell line through the erk 1/2 signaling pathway. Am J Pathol. 2007;171:124–38.

    Article  CAS  PubMed  Google Scholar 

  14. Gama-de-Souza LN, Cyreno-Oliveira E, Freitas VM, Melo ES, Vilas-Boas VF, Moriscot AS, et al. Adhesion and protease activity in cell lines from human salivary gland tumors are regulated by the laminin-derived peptide ag73, syndecan-1 and beta1 integrin. Matrix Biol. 2008;27:402–19.

    Article  CAS  PubMed  Google Scholar 

  15. Jaeger RG, Scarabotto-Neto N, Azambuja N Jr, Freitas VM. Secretion of collagen i and tenascin is modulated by laminin-111 in 3d culture of human adenoid cystic carcinoma cells. Int J Exp Pathol. 2008;89:98–105.

    Article  CAS  PubMed  Google Scholar 

  16. Morais Freitas V, Nogueira da Gama de Souza L, Cyreno Oliveira E, Furuse C, Cavalcanti de Araujo V, Gastaldoni Jaeger R. Malignancy-related 67 kda laminin receptor in adenoid cystic carcinoma. Effect on migration and beta-catenin expression. Oral Oncol. 2007;43:987–98.

    Article  CAS  PubMed  Google Scholar 

  17. Aumailley M, Bruckner-Tuderman L, Carter WG, Deutzmann R, Edgar D, Ekblom P, et al. A simplified laminin nomenclature. Matrix Biol. 2005;24:326–32.

    Article  CAS  PubMed  Google Scholar 

  18. Colognato H, Yurchenco PD. Form and function: the laminin family of heterotrimers. Dev Dyn. 2000;218:213–34.

    Article  CAS  PubMed  Google Scholar 

  19. Faisal Khan KM, Laurie GW, McCaffrey TA, Falcone DJ. Exposure of cryptic domains in the alpha 1-chain of laminin-1 by elastase stimulates macrophages urokinase and matrix metalloproteinase-9 expression. J Biol Chem. 2002;277:13778–86.

    Article  CAS  PubMed  Google Scholar 

  20. Schenk S, Quaranta V. Tales from the crypt[ic] sites of the extracellular matrix. Trends Cell Biol. 2003;13:366–75.

    Article  CAS  PubMed  Google Scholar 

  21. Hoffman MP, Nomizu M, Roque E, Lee S, Jung DW, Yamada Y, et al. Laminin-1 and laminin-2g-domain synthetic peptides bind syndecan-1 and are involved in acinar formation of a human submandibular gland cell line. J Biol Chem. 1998;273:28633–41.

    Article  CAS  PubMed  Google Scholar 

  22. Nomizu M, Kim WH, Yamamura K, Utani A, Song SY, Otaka A, et al. Identification of cell binding sites in the laminin alpha 1 chain carboxyl-terminal globular domain by systematic screening of synthetic peptides. J Biol Chem. 1995;270:20583–90.

    Article  CAS  PubMed  Google Scholar 

  23. Suzuki N, Yokoyama F, Nomizu M. Functional sites in the laminin alpha chains. Connect Tissue Res. 2005;46:142–52.

    Article  CAS  PubMed  Google Scholar 

  24. Kim WH, Nomizu M, Song SY, Tanaka K, Kuratomi Y, Kleinman HK, et al. Laminin-alpha1-chain sequence leu-gln-val-gln-leu-ser-ile-arg (lqvqlsir) enhances murine melanoma cell metastases. Int J Cancer. 1998;77:632–9.

    Article  CAS  PubMed  Google Scholar 

  25. Mochizuki M, Philp D, Hozumi K, Suzuki N, Yamada Y, Kleinman HK, et al. Angiogenic activity of syndecan-binding laminin peptide ag73 (rkrlqvqlsirt). Arch Biochem Biophys. 2007;459:249–55.

    Article  CAS  PubMed  Google Scholar 

  26. Song SY, Nomizu M, Yamada Y, Kleinman HK. Liver metastasis formation by laminin-1 peptide (lqvqlsir)-adhesion selected b16–f10 melanoma cells. Int J Cancer. 1997;71:436–41.

    Article  CAS  PubMed  Google Scholar 

  27. Lee EJ, Kim J, Lee SA, Kim EJ, Chun YC, Ryu MH, et al. Characterization of newly established oral cancer cell lines derived from six squamous cell carcinoma and two mucoepidermoid carcinoma cells. Exp Mol Med. 2005;37:379–90.

    CAS  PubMed  Google Scholar 

  28. Freitas VM, Rangel M, Bisson LF, Jaeger RG, Machado-Santelli GM. The geodiamolide h, derived from brazilian sponge geodia corticostylifera, regulates actin cytoskeleton, migration and invasion of breast cancer cells cultured in three-dimensional environment. J Cell Physiol. 2008;216:583–94.

    Article  CAS  PubMed  Google Scholar 

  29. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol. 2007;8:221–33.

    Article  CAS  PubMed  Google Scholar 

  30. Wilson DF, Jiang DJ, Pierce AM, Wiebkin OW. Oral cancer: role of the basement membrane in invasion. Aust Dent J. 1999;44:93–7.

    Article  CAS  PubMed  Google Scholar 

  31. Graf J, Ogle RC, Robey FA, Sasaki M, Martin GR, Yamada Y, et al. A pentapeptide from the laminin b1 chain mediates cell adhesion and binds the 67, 000 laminin receptor. Biochemistry. 1987;26:6896–900.

    Article  CAS  PubMed  Google Scholar 

  32. Skubitz AP, McCarthy JB, Zhao Q, Yi XY, Furcht LT. Definition of a sequence, RYVVLPR, within laminin peptide f-9 that mediates metastatic fibrosarcoma cell adhesion and spreading. Cancer Res. 1990;50:7612–22.

    CAS  PubMed  Google Scholar 

  33. Ponce ML, Kleinman HK. Identification of redundant angiogenic sites in laminin alpha1 and gamma1 chains. Exp Cell Res. 2003;285:189–95.

    Article  CAS  PubMed  Google Scholar 

  34. Hozumi K, Suzuki N, Nielsen PK, Nomizu M, Yamada Y. Laminin alpha1 chain lg4 module promotes cell attachment through syndecans and cell spreading through integrin alpha2beta1. J Biol Chem. 2006;281:32929–40.

    Article  CAS  PubMed  Google Scholar 

  35. Liotta LA, Kohn EC. The microenvironment of the tumour–host interface. Nature. 2001;411:375–9.

    Article  CAS  PubMed  Google Scholar 

  36. Pinheiro JJ, Freitas VM, Moretti AI, Jorge AG, Jaeger RG. Local invasiveness of ameloblastoma. Role played by matrix metalloproteinases and proliferative activity. Histopathology. 2004;45:65–72.

    Article  CAS  PubMed  Google Scholar 

  37. Patarroyo M, Tryggvason K, Virtanen I. Laminin isoforms in tumor invasion, angiogenesis and metastasis. Semin Cancer Biol. 2002;12:197–207.

    Article  CAS  PubMed  Google Scholar 

  38. Shinohara M, Nakamura S, Sasaki M, Kurahara S, Ikebe T, Harada T, et al. Expression of integrins in squamous cell carcinoma of the oral cavity. Correlations with tumor invasion and metastasis. Am J Clin Pathol. 1999;111:75–88.

    CAS  PubMed  Google Scholar 

  39. Thorup AK, Reibel J, Schiodt M, Stenersen TC, Therkildsen MH, Carter WG, et al. Can alterations in integrin and laminin-5 expression be used as markers of malignancy? APMIS. 1998;106:1170–80.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang K, Kim JP, Woodley DT, Waleh NS, Chen YQ, Kramer RH. Restricted expression and function of laminin 1-binding integrins in normal and malignant oral mucosal keratinocytes. Cell Adhes Commun. 1996;4:159–74.

    Article  CAS  PubMed  Google Scholar 

  41. Beauvais DM, Burbach BJ, Rapraeger AC. The syndecan-1 ectodomain regulates alphavbeta3 integrin activity in human mammary carcinoma cells. J Cell Biol. 2004;167:171–81.

    Article  CAS  PubMed  Google Scholar 

  42. Humphries MJ, Mostafavi-Pour Z, Morgan MR, Deakin NO, Messent AJ, Bass MD. Integrin-syndecan cooperation governs the assembly of signalling complexes during cell spreading. Novartis Found Symp. 2005;269:178–88. discussion 188-192, 223-130.

    Article  CAS  PubMed  Google Scholar 

  43. Ghosh S, Stack MS. Proteolytic modification of laminins: functional consequences. Microsc Res Tech. 2000;51:238–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This investigation was supported by The State of São Paulo Research Foundation (FAPESP grants 2006/57079-4 and 2008/57103-8) and Brazilian National Council for Scientific and Technological Development (CNPq grants 471751/2003-0, 304868/2006-0 and 470622/2007-5). Adriane S. Siqueira and Letícia N. Gama-de-Souza are recipients of Graduate fellowships from FAPESP (2007/51950-8 and 2005/55602-9). João J. V. Pinheiro is recipient of a Post Doctoral fellowship from CNPq (504667/2008-4).

Conflict of Interest Statement

None declared

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruy G. Jaeger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siqueira, A.S., Gama-de-Souza, L.N., Arnaud, M.V.C. et al. Laminin-derived peptide AG73 regulates migration, invasion, and protease activity of human oral squamous cell carcinoma cells through syndecan-1 and β1 integrin. Tumor Biol. 31, 46–58 (2010). https://doi.org/10.1007/s13277-009-0008-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-009-0008-x

Keywords

Navigation