Skip to main content

Advertisement

Log in

Association of polymorphisms in one-carbon metabolizing genes with breast cancer risk in Syrian women

  • Research Article
  • Published:
Tumor Biology

Abstract

Dietary folate status as well as polymorphisms in one-carbon metabolism genes may affect the risk of breast cancer through aberrant DNA methylation and altered nucleotide synthesis and DNA repair. A large number of studies investigated the role of methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) polymorphisms in breast cancer with inconsistent results. Association between multiple polymorphisms in one-carbon metabolism genes and breast cancer was not studied before in an Arab population. The purpose of the present study is to test the hypothesis that polymorphisms in one-carbon metabolism genes are associated with breast cancer susceptibility in Syrian breast cancer women patients. A total of 245 subjects (119 breast cancer women patients and 126 healthy controls) were genotyped for MTHFR C677T and A1298C and MTRR A66G polymorphisms. Association was tested for under numerous genetic models. A statistically significant association was found for MTHFR A1298C polymorphism especially under the allele contrast model (odds ratio (OR) = 1.68, 95% confidence interval (CI) (1.16–2.45), P = 0.006). On the other hand, no significant association was found for MTHFR C677T or MTRR A66G under any of the genetic models tested. The effects of the compound genotypes were also examined. The 66GG genotype was found to be protective against breast cancer when combined with the 677CT or 1298AC genotype (OR = 0.18, 95% CI (0.04–0.82), P = 0.014; OR = 0.3, 95% CI (0.08–1.11), P = 0.058). In conclusion, our study supports the hypothesis that polymorphisms in one-carbon gene metabolisms modulate the risk for breast cancer, particularly the A1298C polymorphism of the MTHFR gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jemal A, Bray F, et al. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    PubMed  Google Scholar 

  2. Howlader N, Noone AM, Krapcho M, Neyman N, Aminou R, Waldron W, Altekruse SF, Kosary CL, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Eisner MP, Lewis DR, Chen HS, Feuer EJ, Cronin KA, Edwards BK, editors. SEER cancer statistics review, 1975–2008, National Cancer Institute; 2011.

  3. Anonymous. Breast cancer and hormone replacement therapy: collaborative reanalysis of data from 51 epidemiological studies of 52,705 women with breast cancer and 108,411 women without breast cancer. Collaborative Group on Hormonal Factors in Breast Cancer. Lancet. 1997;350(9084):1047–59.

    Google Scholar 

  4. Anonymous. Breast cancer and hormonal contraceptives: collaborative reanalysis of individual data on 53 297 women with breast cancer and 100 239 women without breast cancer from 54 epidemiological studies. Collaborative Group on Hormonal Factors in Breast Cancer. Lancet. 1996;347(9017):1713–27.

    Google Scholar 

  5. Hulka BS, Stark AT. Breast cancer: cause and prevention. Lancet. 1995;346(8979):883–7.

    CAS  PubMed  Google Scholar 

  6. Kelsey JL. Breast cancer epidemiology: summary and future directions. Epidemiol Rev. 1993;15(1):256–63.

    CAS  PubMed  Google Scholar 

  7. Wiseman M. The second World Cancer Research Fund/American Institute for Cancer Research expert report. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Proc Nutr Soc. 2008;67(3):253–6.

    PubMed  Google Scholar 

  8. Antoniou AC, Pharoah PD, McMullan G, Day NE, Ponder BA, Easton D. Evidence for further breast cancer susceptibility genes in addition to BRCA1 and BRCA2 in a population-based study. Genet Epidemiol. 2001;21:1–18.

    CAS  PubMed  Google Scholar 

  9. Davis CD, Uthus EO. DNA methylation, cancer susceptibility, and nutrient interactions. Exp Biol Med (Maywood). 2004;229(10):988–95.

    CAS  Google Scholar 

  10. Maruti SS, Ulrich CM, White E. Folate and one-carbon metabolism nutrients from supplements and diet in relation to breast cancer risk. Am J Clin Nutr. 2009;89:624–33.

    CAS  PubMed  Google Scholar 

  11. Larsson SC, Bergkvist L, Wolk A. Folate intake and risk of breast cancer by estrogen and progesterone receptor status in a Swedish cohort. Cancer Epidemiol Biomarkers Prev. 2008;17:3444–9.

    CAS  PubMed  Google Scholar 

  12. Ericson U, Sonestedt E, Gullberg B, Olsson H, Wirfalt E. High folate intake is associated with lower breast cancer incidence in postmenopausal women in the Malmo Diet and Cancer cohort. Am J Clin Nutr. 2007;86:434–43.

    CAS  PubMed  Google Scholar 

  13. Rozen R. Genetic predisposition to hyperhomocysteinemia: deficiency of methylenetetrahydrofolate reductase (MTHFR). Thromb Haemost. 1997;78(1):523–6.

    CAS  PubMed  Google Scholar 

  14. Ames BN. DNA damage from micronutrient deficiencies is likely to be a major cause of cancer. Mutat Res. 2001;475:7–20.

    CAS  PubMed  Google Scholar 

  15. Frosst P, Blom HJ, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10(1):111–3.

    CAS  PubMed  Google Scholar 

  16. van der Put NM, Gabreels F, et al. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet. 1998;62(5):1044–51.

    PubMed  PubMed Central  Google Scholar 

  17. Friso S, Choi SW, Girelli D, Mason JB, Dolnikowski GG, Bagley PJ, et al. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci USA. 2002;99(8):5606–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Olteanu H, Munson T, et al. Differences in the efficiency of reductive activation of methionine synthase and exogenous electron acceptors between the common polymorphic variants of human methionine synthase reductase. Biochemistry. 2002;41(45):13378–85.

    CAS  PubMed  Google Scholar 

  19. Shrubsole MJ, Gao YT, Cai Q, Shu XO, Dai Q, Jin F, et al. MTR and MTRR polymorphisms, dietary intake, and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2006;15:586–8.

    CAS  PubMed  Google Scholar 

  20. Lissowska J, Gaudet MM, Brinton LA, Chanock SJ, Peplonska B, Welch R, et al. Genetic polymorphisms in the one-carbon metabolism pathway and breast cancer risk: a population-based case–control study and meta-analyses. Int J Cancer. 2007;120:2696–703.

    CAS  PubMed  Google Scholar 

  21. Xu X, Gammon MD, Zhang H, Wetmur JG, Rao M, Teitelbaum SL, et al. Polymorphisms of one-carbon-metabolizing genes and risk of breast cancer in a population-based study. Carcinogenesis. 2007;28:1504–9.

    CAS  PubMed  Google Scholar 

  22. Kotsopoulos J, Zhang WW, Zhang S, McCready D, Trudeau M, Zhang P, et al. Polymorphisms in folate metabolizing enzymes and transport proteins and the risk of breast cancer. Breast Cancer Res Treat. 2008;112:585–93.

    CAS  PubMed  Google Scholar 

  23. Suzuki T, Matsuo K, Hirose K, Hiraki A, Kawase T, Watanabe M, et al. One-carbon metabolism-related gene polymorphisms and risk of breast cancer. Carcinogenesis. 2008;29:356–62. doi:10.1093/carcin/bgm295.

    CAS  PubMed  Google Scholar 

  24. Sharp L, Little J, Schofield AC, Pavlidou E, Cotton SC, Miedzybrodzka Z, et al. Folate and breast cancer: the role of polymorphisms in methylenetetrahydrofolate reductase (MTHFR). Cancer Lett. 2002;181:65–71.

    CAS  PubMed  Google Scholar 

  25. Campbell IG, Baxter SW, Eccles DM, Choong DY. Methylenetetrahydrofolate reductase polymorphism and susceptibility to breast cancer. Breast Cancer Res. 2002;4(6):R14.

    PubMed  PubMed Central  Google Scholar 

  26. Semenza JC, Delfino RJ, Ziogas A, Anton-Culver H. Breast cancer risk and methylenetetrahydrofolate reductase polymorphism. Breast Cancer Res Treat. 2003;77:217–23.

    CAS  PubMed  Google Scholar 

  27. Langsenlehner U, Krippl P, Renner W, Yazdani-Biuki B, Wolf G, Wascher TC, et al. The common 677C>T gene polymorphism of methylenetetrahydrofolate reductase gene is not associated with breast cancer risk. Breast Cancer Res Treat. 2003;81:169–72.

    CAS  PubMed  Google Scholar 

  28. Ergul E, Sazci A, Utkan Z, Canturk NZ. Polymorphisms in the MTHFR gene are associated with breast cancer. Tumour Biol. 2003;24:286–90.

    CAS  PubMed  Google Scholar 

  29. Shrubsole MJ, Gao YT, Cai Q, Shu XO, Dai Q, Hebert JR, et al. MTHFR polymorphisms, dietary folate intake, and breast cancer risk: results from the Shanghai Breast Cancer Study. Cancer Epidemiol Biomarkers Prev. 2004;13:190–6.

    CAS  PubMed  Google Scholar 

  30. Hu J, Zhou GW, et al. MTRR A66G polymorphism and breast cancer risk: a meta-analysis. Breast Cancer Res Treat. 2010;124(3):779–84.

    CAS  PubMed  Google Scholar 

  31. Qi X, Ma X, et al. Methylenetetrahydrofolate reductase polymorphisms and breast cancer risk: a meta-analysis from 41 studies with 16,480 cases and 22,388 controls. Breast Cancer Res Treat. 2010;123(2):499–506.

    CAS  PubMed  Google Scholar 

  32. Lajin B, Alachkar A, Alhaj Sakur A. Triplex tetra-primer ARMS-PCR method for the simultaneous detection of MTHFR c.677C>T and c.1298A>C, and MTRR c.66A>G polymorphisms of the folate–homocysteine metabolic pathway. Mol Cell Probes. 2012;26(1):16–20.

    CAS  PubMed  Google Scholar 

  33. Slatkin M, Excoffier L. Testing for linkage disequilibrium in genotypic data using the EM algorithm. Heredity. 1996;76(4):377–83.

    PubMed  Google Scholar 

  34. Yoo J, Seo B, et al. SNPAnalyzer: a web-based integrated workbench for single-nucleotide polymorphism analysis. Nucleic Acids Res. 2005;33:W483–8. Web server issue.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen J, Giovannucci EL, et al. MTHFR polymorphism, methyl-replete diets and the risk of colorectal carcinoma and adenoma among U.S. men and women: an example of gene–environment interactions in colorectal tumorigenesis. J Nutr. 1999;129(2S Suppl):560S–4S.

    CAS  PubMed  Google Scholar 

  36. Slattery ML, Potter JD, et al. Methylenetetrahydrofolate reductase, diet, and risk of colon cancer. Cancer Epidemiol Biomarkers Prev. 1999;8(6):513–8.

    CAS  PubMed  Google Scholar 

  37. Ma J, Stampfer MJ, et al. Methylenetetrahydrofolate reductase polymorphism, dietary interactions, and risk of colorectal cancer. Cancer Res. 1997;57(6):1098–102.

    CAS  PubMed  Google Scholar 

  38. Skibola CF, Smith MT, et al. Polymorphisms in the methylenetetrahydrofolate reductase gene are associated with susceptibility to acute leukemia in adults. Proc Natl Acad Sci U S A. 1999;96(22):12810–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Esteller M, Garcia A, et al. Germ line polymorphisms in cytochrome-P450 1A1 (C4887 CYP1A1) and methylenetetrahydrofolate reductase (MTHFR) genes and endometrial cancer susceptibility. Carcinogenesis. 1997;18(12):2307–11.

    CAS  PubMed  Google Scholar 

  40. Piyathilake CJ, Macaluso M, et al. Methylenetetrahydrofolate reductase (MTHFR) polymorphism increases the risk of cervical intraepithelial neoplasia. Anticancer Res. 2000;20(3A):1751–7.

    CAS  PubMed  Google Scholar 

  41. Chou YC, Wu MH, et al. Genetic polymorphisms of the methylenetetrahydrofolate reductase gene, plasma folate levels and breast cancer susceptibility: a case–control study in Taiwan. Carcinogenesis. 2006;27(11):2295–300.

    CAS  PubMed  Google Scholar 

  42. Chen J, Gammon MD, et al. One-carbon metabolism, MTHFR polymorphisms, and risk of breast cancer. Cancer Res. 2005;65(4):1606–14.

    CAS  PubMed  Google Scholar 

  43. Deligezer U, Akisik EE, et al. Homozygosity at the C677T of the MTHFR gene is associated with increased breast cancer risk in the Turkish population. Vivo. 2005;19(5):889–93.

    CAS  Google Scholar 

  44. Sellers TA, Kushi LH, et al. Dietary folate intake, alcohol, and risk of breast cancer in a prospective study of postmenopausal women. Epidemiology. 2001;12(4):420–8.

    CAS  PubMed  Google Scholar 

  45. Shrubsole MJ, Gao YT, et al. MTHFR polymorphisms, dietary folate intake, and breast cancer risk: results from the Shanghai Breast Cancer Study. Cancer Epidemiol Biomarkers Prev. 2004;13(2):190–6.

    CAS  PubMed  Google Scholar 

  46. Zhang SM, Willett WC, et al. Plasma folate, vitamin B6, vitamin B12, homocysteine, and risk of breast cancer. J Natl Cancer Inst. 2003;95(5):373–80.

    CAS  PubMed  Google Scholar 

  47. Tao MH, Shields PG, et al. DNA promoter methylation in breast tumors: no association with genetic polymorphisms in MTHFR and MTR. Cancer Epidemiology Biomarkers & Prevention. 2009;18(3):998–1002.

    CAS  Google Scholar 

  48. Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet. 1999;21:163–7.

    CAS  PubMed  Google Scholar 

  49. Kwak SY, Kim UK, Cho HJ, Lee HK, Kim HJ, Kim NK, et al. Methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) gene polymorphisms as risk factors for hepatocellular carcinoma in a Korean population. Anticancer Res. 2008;28:2807–11.

    CAS  PubMed  Google Scholar 

  50. Stolzenberg-Solomon RZ, Qiao YL, Abnet CC, Ratnasinghe DL, Dawsey SM, Dong ZW, et al. Esophageal and gastric cardia cancer risk and folate- and vitamin B(12)related polymorphisms in Linxian, China. Cancer Epidemiol Biomarkers Prev. 2003;12:1222–6.

    CAS  PubMed  Google Scholar 

  51. Matsuo K, Hamajima N, Hirai T, Kato T, Inoue M, Takezaki T, et al. Methionine synthase reductase gene A66G polymorphism is associated with risk of colorectal cancer. Asian Pac J Cancer Prev. 2002;3:353–9.

    PubMed  Google Scholar 

  52. Mir MM, Dar JA, et al. Combined impact of polymorphism of folate metabolism genes; glutamate carboxypeptidase, methylene tetrahydrofolate reductase and methionine synthase reductase on breast cancer susceptibility in Kashmiri women. Int J Health Sci (Qassim). 2008;2(1):3–14.

    Google Scholar 

  53. Gemmati D, Ongaro A, et al. Common gene polymorphisms in the metabolic folate and methylation pathway and the risk of acute lymphoblastic leukemia and non-Hodgkin's lymphoma in adults. Cancer Epidemiol Biomarkers Prev. 2004;13(5):787–94.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bassam Lajin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lajin, B., Alhaj Sakur, A., Ghabreau, L. et al. Association of polymorphisms in one-carbon metabolizing genes with breast cancer risk in Syrian women. Tumor Biol. 33, 1133–1139 (2012). https://doi.org/10.1007/s13277-012-0354-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-012-0354-y

Keywords

Navigation