Skip to main content

Advertisement

Log in

The herpes simplex virus type 1 latency associated transcript locus is required for the maintenance of reactivation competent latent infections

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Herpes simplex virus (HSV) establishes latent infections in sensory neurons from which it can periodically reactivate and cause recurrent disease and transmission to new hosts. Little is known about the virally encoded mechanisms that influence the maintenance of HSV latent infectious and modulate the frequency of virus reactivation from the latent state. Here, we report that the latency associated transcript locus of HSV-1 is required for long-term maintenance of reactivation competent latent infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arthur J, Efstathiou S et al (1993) Intranuclear foci containing low abundance herpes simplex virus latency-associated transcripts visualized by non-isotopic in situ hybridization. J Gen Virol 74(Pt 7):1363–1370

    Article  PubMed  CAS  Google Scholar 

  • Bloom DC, Devi-Rao GB et al (1994) Molecular analysis of herpes simplex virus type 1 during epinephrine- induced reactivation of latently infected rabbits in vivo. J Virol 68(3):1283–1292

    PubMed  CAS  Google Scholar 

  • Deatly AM, Spivack JG et al (1987) RNA from an immediate early region of the type 1 herpes simplex virus genome is present in the trigeminal ganglia of latently infected mice. Proc Natl Acad Sci USA 84(10):3204–3208

    Article  PubMed  CAS  Google Scholar 

  • Doerig C, Pizer LI et al (1991) An antigen encoded by the latency-associated transcript in neuronal cell cultures latently infected with herpes simplex virus type 1. J Virol 65(5):2724–2727

    PubMed  CAS  Google Scholar 

  • Farrell MJ, Dobson AT et al (1991) Herpes simplex virus latency-associated transcript is a stable intron. Proc Natl Acad Sci USA 88(3):790–794

    Article  PubMed  CAS  Google Scholar 

  • Field HJ, Wildy P (1978) The pathogenicity of thymidine kinase-deficient mutants of herpes simplex virus in mice. J Hyg (Lond) 81(2):267–277

    Article  CAS  Google Scholar 

  • Fuchs J, Celum C et al (2010) Clinical and virologic efficacy of herpes simplex virus type 2 suppression by acyclovir in a multicontinent clinical trial. J Infect Dis 201:1164–1168

    Google Scholar 

  • Garber DA, Schaffer PA et al (1997) A LAT-associated function reduces productive-cycle gene expression during acute infection of murine sensory neurons with herpes simplex virus type 1. J Virol 71(8):5885–5893

    PubMed  CAS  Google Scholar 

  • Glynn JR, Biraro S et al (2009) Herpes simplex virus type 2: a key role in HIV incidence. AIDS 23(12):1595–1598

    Article  PubMed  Google Scholar 

  • Green MT, Courtney RJ et al (1981) Detection of an immediate early herpes simplex virus type 1 polypeptide in trigeminal ganglia from latently infected animals. Infect Immun 34(3):987–992

    PubMed  CAS  Google Scholar 

  • Henderson G, Jaber T et al (2009) Identification of herpes simplex virus type 1 proteins encoded within the first 1.5 kb of the latency-associated transcript. J Neurovirol 15(5–6):439–448

    Article  PubMed  CAS  Google Scholar 

  • Horsburgh BC, Chen SH et al (1998) Recurrent acyclovir-resistant herpes simplex in an immunocompromised patient: can strain differences compensate for loss of thymidine kinase in pathogenesis? J Infect Dis 178(3):618–625

    Article  PubMed  CAS  Google Scholar 

  • Jaber T, Henderson G et al (2009) Identification of a novel herpes simplex virus type 1 transcript and protein (AL3) expressed during latency. J Gen Virol 90(Pt 10):2342–2352

    Article  PubMed  CAS  Google Scholar 

  • Jacobson JG, Ruffner KL et al (1993) Herpes simplex virus thymidine kinase and specific stages of latency in murine trigeminal ganglia. J Virol 67(11):6903–6908

    PubMed  CAS  Google Scholar 

  • Kang W, Mukerjee R et al (2003) Establishment and maintenance of HSV latent infection is mediated through correct splicing of the LAT primary transcript. Virology 312(1):233–244

    Article  PubMed  CAS  Google Scholar 

  • Peng W, Vitvitskaia O et al (2008) Identification of two small RNAs within the first 1.5-kb of the herpes simplex virus type 1-encoded latency-associated transcript. J Neurovirol 14(1):41–52

    Article  PubMed  CAS  Google Scholar 

  • Pepose JS, Keadle TL et al (2006) Ocular herpes simplex: changing epidemiology, emerging disease patterns, and the potential of vaccine prevention and therapy. Am J Ophthalmol 141(3):547–557

    Article  PubMed  Google Scholar 

  • Perng GC, Dunkel EC et al (1994) The latency-associated transcript gene of herpes simplex virus type 1 (HSV-1) is required for efficient in vivo spontaneous reactivation of HSV-1 from latency. J Virol 68(12):8045–8055

    PubMed  CAS  Google Scholar 

  • Perng GC, Slanina SM et al (2000) The latency-associated transcript gene enhances establishment of herpes simplex virus type 1 latency in rabbits. J Virol 74(4):1885–1891

    Article  PubMed  CAS  Google Scholar 

  • Perng GC, Maguen B et al (2002) A novel herpes simplex virus type 1 transcript (AL-RNA) antisense to the 5′ end of the latency-associated transcript produces a protein in infected rabbits. J Virol 76(16):8003–8010

    Article  PubMed  CAS  Google Scholar 

  • Pyles RB, Thompson RL (1994) Mutations in accessory DNA replicating functions alter the relative mutation frequency of herpes simplex virus type 1 strains in cultured murine cells. J Virol 68(7):4514–4524

    PubMed  CAS  Google Scholar 

  • Rock DL, Nesburn AB et al (1987) Detection of latency-related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1. J Virol 61(12):3820–3826

    PubMed  CAS  Google Scholar 

  • Roizman B, Knipe DM, Whitley RJ (2007) Herpes Simplex Viruses. In: Knipe D, Howley P (eds) Fields Virology. Lippincott Williams & Wilkins, Philadelphia, pp 2501–2602

    Google Scholar 

  • Sawtell NM (1997) Comprehensive quantification of herpes simplex virus latency at the single-cell level. J Virol 71(7):5423–5431

    PubMed  CAS  Google Scholar 

  • Sawtell NM (1998) The probability of in vivo reactivation of herpes simplex virus type 1 increases with the number of latently infected neurons in the ganglia. J Virol 72(8):6888–6892

    PubMed  CAS  Google Scholar 

  • Sawtell NM (2003) Quantitative analysis of herpes simplex virus reactivation in vivo demonstrates that reactivation in the nervous system is not inhibited at early times postinoculation. J Virol 77(7):4127–4138

    Article  PubMed  CAS  Google Scholar 

  • Sawtell NM (2005) Detection and quantification of the rare latently infected cell undergoing herpes simplex virus transcriptional activation in the nervous system in vivo. Methods Mol Biol 292:57–72

    PubMed  CAS  Google Scholar 

  • Sawtell NM, Thompson RL (1992a) Herpes simplex virus type 1 latency-associated transcription unit promotes anatomical site-dependent establishment and reactivation from latency. J Virol 66(4):2157–2169

    PubMed  CAS  Google Scholar 

  • Sawtell NM, Thompson RL (1992b) Rapid in vivo reactivation of herpes simplex virus in latently infected murine ganglionic neurons after transient hyperthermia. J Virol 66(4):2150–2156

    PubMed  CAS  Google Scholar 

  • Sawtell NM, Thompson RL (2004) Comparison of herpes simplex virus reactivation in ganglia in vivo and in explants demonstrates quantitative and qualitative differences. J Virol 78(14):7784–7794

    Article  PubMed  CAS  Google Scholar 

  • Sawtell NM, Poon DK et al (1998) The latent herpes simplex virus type 1 genome copy number in individual neurons is virus strain specific and correlates with reactivation. J Virol 72(7):5343–5350

    PubMed  CAS  Google Scholar 

  • Sawtell NM, Thompson RL et al (2006) Herpes simplex virus DNA synthesis is not a decisive regulatory event in the initiation of lytic viral protein expression in neurons in vivo during primary infection or reactivation from latency. J Virol 80(1):38–50

    Article  PubMed  CAS  Google Scholar 

  • Sedarati F, Izumi KM et al (1989) Herpes simplex virus type 1 latency-associated transcription plays no role in establishment or maintenance of a latent infection in murine sensory neurons. J Virol 63(10):4455–4458

    PubMed  CAS  Google Scholar 

  • Stevens JG, Wagner EK et al (1987) RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science 235(4792):1056–1059

    Article  PubMed  CAS  Google Scholar 

  • Stone MJ, Hawkins CP (2007) A medical overview of encephalitis. Neuropsychol Rehabil 17(4–5):429–449

    Article  PubMed  Google Scholar 

  • Tenser RB, Miller RL et al (1979) Trigeminal ganglion infection by thymidine kinase-negative mutants of herpes simplex virus. Science 205(4409):915–917

    Article  PubMed  CAS  Google Scholar 

  • Thomas SK, Gough G et al (1999) Herpes simplex virus latency-associated transcript encodes a protein which greatly enhances virus growth, can compensate for deficiencies in immediate-early gene expression, and is likely to function during reactivation from virus latency. J Virol 73(8):6618–6625

    PubMed  CAS  Google Scholar 

  • Thomas SK, Lilley CE et al (2002) A protein encoded by the herpes simplex virus (HSV) type 1 2-kilobase latency-associated transcript is phosphorylated, localized to the nucleus, and overcomes the repression of expression from exogenous promoters when inserted into the quiescent HSV genome. J Virol 76(8):4056–4067

    Article  PubMed  CAS  Google Scholar 

  • Thompson RL, Sawtell NM (1997) The herpes simplex virus type 1 latency-associated transcript gene regulates the establishment of latency. J Virol 71(7):5432–5440

    PubMed  CAS  Google Scholar 

  • Thompson RL, Sawtell NM (2001) Herpes simplex virus type 1 latency-associated transcript gene promotes neuronal survival. J Virol 75(14):6660–6675

    Article  PubMed  CAS  Google Scholar 

  • Thompson RL, Sawtell NM (2006) Evidence that the herpes simplex virus type 1 ICP0 protein does not initiate reactivation from latency in vivo. J Virol 80(22):10919–10930

    Article  PubMed  CAS  Google Scholar 

  • Thompson RL, Shieh MT et al (2003) Analysis of herpes simplex virus ICP0 promoter function in sensory neurons during acute infection, establishment of latency, and reactivation in vivo. J Virol 77(22):12319–12330

    Article  PubMed  CAS  Google Scholar 

  • Thompson RL, Preston CM et al (2009) De novo synthesis of VP16 coordinates the exit from HSV latency in vivo. PLoS Pathog 5(3):e1000352

    Article  PubMed  Google Scholar 

  • Toma HS, Murina AT et al (2008) Ocular HSV-1 latency, reactivation and recurrent disease. Semin Ophthalmol 23(4):249–273

    Article  PubMed  Google Scholar 

  • Umbach JL, Kramer MF et al (2008) MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454(7205):780–783

    PubMed  CAS  Google Scholar 

  • Wechsler SL, Nesburn AB et al (1988) Fine mapping of the latency-related gene of herpes simplex virus type 1: alternative splicing produces distinct latency-related RNAs containing open reading frames. J Virol 62(11):4051–4058

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by Award Number R01 EY 013168 from the National Eye Institute and RO1 AI 32121 of the National Institute of Allergy and Infectious Diseases. The funding agencies had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

All authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Thompson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, R.L., Sawtell, N.M. The herpes simplex virus type 1 latency associated transcript locus is required for the maintenance of reactivation competent latent infections. J. Neurovirol. 17, 552–558 (2011). https://doi.org/10.1007/s13365-011-0071-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-011-0071-0

Keywords

Navigation