Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((volume 589))

Abstract

The formation of the neural crest has been traditionally considered a classic example of secondary induction, where signals form one tissue elicit a response in a competent responding tissue. Interactions of the neural plate with paraxial mesoderm or nonneural ectoderm can generate neural crest. Several signaling pathways converge at the border between neural and nonneural ectoderm where the neural crest will form. Among the molecules identified in this process are members of the BMP, Wnt, FGF and Notch signaling pathways. The concerted action of these nals and their downstream targets will define the identity of the neural crest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. LeDouarin N. The neural crest: Cambridge University Press; 1982.

    Google Scholar 

  2. LeDouarin N, Kalcheim C. The Neural Crest. 2nd ed: Cambridge University Press; 1999.

    Google Scholar 

  3. Moury JD, Jacobson AG. The origins of neural crest cells in the axolotl. Dev Biol 1990;141(2):243–253.

    Article  PubMed  CAS  Google Scholar 

  4. Liem KF Jr, Tremml G, Roelink H et al. Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 1995; 82(6):969–979.

    Article  PubMed  CAS  Google Scholar 

  5. Sclleck MA, Bronner-Fraser M. Origins of the avian neural crest: the role of neural plate-epidermal interactions. Development 1995; 121(2):525–538.

    Google Scholar 

  6. Mancilla A, Mayor R. Neural crest formation in Xenopus laevis: mechanisms of Xslug induction. Dev Biol 1996; 177(2):580–589.

    Article  PubMed  CAS  Google Scholar 

  7. Monsoro-Burq AH, Fletcher RB, Harland RM. Neural crest induction by paraxial mesoderm in Xenopus embryos requires FGF signals. Development 2003; 130(14):3111–3124.

    Article  PubMed  CAS  Google Scholar 

  8. LaBonne C, Bronner-Fraser M. Neural crest induction in Xenopus: evidence for a two-signal model. Development 1998; 125(13):2403–2414.

    PubMed  CAS  Google Scholar 

  9. Rollhauser-ter Horst J. Artificial neural crest formation in amphibia. Anat Embryol (Berl) 1979; 157(1):113–120.

    Article  PubMed  CAS  Google Scholar 

  10. Rollhauser-ter Horst J. Neural crest replaced by gastrula ectoderm in amphibia. Effect on neurulation, CNS, gills and limbs. Anat Embryol (Berl) 1980; 160(2):203–211.

    Article  PubMed  CAS  Google Scholar 

  11. Woo K, Fraser SE. Specification of the hindbrain fate in the zebrafish. Dev Biol 1998; 197(2):283–296.

    Article  PubMed  CAS  Google Scholar 

  12. Dickinson ME, Selleck MA, McMahon AP et al. Dorsalization of the neural tube by the nonneural ectoderm. Development 1995; 121(7):2099–2106.

    PubMed  CAS  Google Scholar 

  13. Hamburger V, Hamilton HL. A series of normal stages in the development of the chick embryo. J Morphol 1951; 88:49–92.

    Article  Google Scholar 

  14. Basch ML, Selleck MA, Bronner-Fraser M. Timing and competence of neural crest formation. Dev Neurosci 2000; 22(3):217–227.

    Article  PubMed  CAS  Google Scholar 

  15. Raven CP, Kloos J. Induction by medial and lateral pieces of the archenteron roof with special reference to the determination of the neural crest. Acta Néerl Morph 1945; 5:348–362.

    Google Scholar 

  16. Marchant L, Linker C, Ruiz P et al. The inductive properties of mesoderm suggest that the neural crest cells are specified by a BMP gradient. Dev Biol 1998; 198(2):319–329.

    PubMed  CAS  Google Scholar 

  17. Selleck MA, Bronner-Fraser M. The genesis of avian neural crest cells: a classic embryonic induction. Proc Natl Acad Sci USA 1996; 93(18):9352–9357.

    Article  PubMed  CAS  Google Scholar 

  18. Bonstein L, Elias S, Frank D. Paraxial-fated mesoderm is required for neural crest induction in Xenopus embryos. Dev Biol 1998; 193(2):156–168.

    Article  PubMed  CAS  Google Scholar 

  19. Bang AG, Papalopulu N, Kintner C et al. Expression of Pax-3 is initiated in the early neural plate by posteriorizing signals produced by the organizer and by posterior nonaxial mesoderm. Development 1997; 124(10):2075–2085.

    PubMed  CAS  Google Scholar 

  20. Ragland JW, Raible DW. Signals derived from the underlying mesoderm are dispensable for zebrafish neural crest induction. Dev Biol 2004; 276(1): 16–30.

    Article  PubMed  CAS  Google Scholar 

  21. Basler K, Edlund T, Jessell TM et al. Control of cell pattern in the neural tube: regulation of cell differentiation by dorsalin-1, a novel TGF beta family member. Cell 1993; 73(4):687–702.

    Article  PubMed  CAS  Google Scholar 

  22. Streit A, Lee KJ, Woo I et al. Chordin regulates primitive streak development and the stability of induced neural cells, but is not sufficient for neural induction in the chick embryo. Development 1998; 125(3):507–519.

    PubMed  CAS  Google Scholar 

  23. Selleck MA, Garcia-Castro MI, Artinger KB et al. Effects of Shh and Noggin on neural crest formation demonstrate that BMP is required in the neural tube but not ectoderm. Development 1998; 125(24):4919–4930.

    PubMed  CAS  Google Scholar 

  24. Sela-Donenfeld D, Kalcheim C. Regulation of the onset of neural crest migration by coordinated activity of BMP4 and Noggin in the dorsal neural tube. Development 1999; 126(21):4749–4762.

    PubMed  CAS  Google Scholar 

  25. Winnier G, Blessing M, Labosky PA, Hogan BL. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 1995; 9(17):2105–2116.

    Article  PubMed  CAS  Google Scholar 

  26. Dudley AT, Lyons KM, Robertson EJ. A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev 1995; 9(22):2795–2807.

    Article  PubMed  CAS  Google Scholar 

  27. Solloway MJ, Robertson EJ. Early embryonic lethality in Bmp5;Bmp7 double mutant mice suggests functional redundancy within the 60A subgroup. Development 1999; 126(8):1753–1768.

    PubMed  CAS  Google Scholar 

  28. McMahon JA, Takada S, Zimmerman LB et al. Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev 1998; 12(10):1438–1452.

    PubMed  CAS  Google Scholar 

  29. Matzuk MM, Lu N, Vogel H et al. Multiple defects and perinatal death in mice deficient in follistatin. Nature 1995; 374(6520):360–363.

    Article  PubMed  CAS  Google Scholar 

  30. Mayor R, Guerrero N, Martinez C. Role of FGF and noggin in neural crest induction. Dev Biol 1997; 189(1):1–12.

    Article  PubMed  CAS  Google Scholar 

  31. Nguyen VH, Trout J, Connors SA et al. Dorsal and intermediate neuronal cell types of the spinal cord are established by a BMP signaling pathway. Development 2000; 127(6): 1209–1220.

    PubMed  CAS  Google Scholar 

  32. Nguyen VH, Schmid B, Trout J et al. Ventral and lateral regions of the zebrafish gastrula, including the neural crest progenitors, are established by a bmp2b/swirl pathway of genes. Dev Biol 1998; 199(1):93–110.

    Article  PubMed  CAS  Google Scholar 

  33. Schmid B, Furthauer M, Connors SA et al. Equivalent genetic roles for bmp7/snailhouse and bmp2b/swirl in dorsoventral pattern formation. Development 2000; 127(5):957–967.

    PubMed  CAS  Google Scholar 

  34. Nikaido M, Tada M, Saji T et al. Conservation of BMP signaling in zebrafish mesoderm patterning. Mech Dev 1997; 61(1–2):75–88.

    Article  PubMed  CAS  Google Scholar 

  35. Saint-Jeannet JP, He X, Varmus HE et al. Regulation of dorsal fate in the neuraxis by Wnt-1 and Wnt-3a. Proc Natl Acad Sci USA 1997; 94(25):13713–13718.

    Article  PubMed  CAS  Google Scholar 

  36. Chang C, Hemmati-Brivanlou A. Neural crest induction by Xwnt7B in Xenopus. Dev Biol 1998; 194(1):129–134.

    Article  PubMed  CAS  Google Scholar 

  37. Garcia-Castro MI, Marcelle C, Bronner-Fraser M. Ectodermal Wnt function as a neural crest inducer. Science 2002; 297(5582):848–851.

    PubMed  CAS  Google Scholar 

  38. Ikeya M, Lee SM, Johnson JE et al. Wnt signalling required for expansion of neural crest and CNS progenitors. Nature 1997; 389(6654):966–970.

    Article  PubMed  CAS  Google Scholar 

  39. Lee HY, Kleber M, Hari L et al. Instructive role of Wnt/beta-catenin in sensory fate specification in neural crest stem cells. Science 2004; 303(5660): 1020–1023.

    Article  PubMed  CAS  Google Scholar 

  40. Dickinson ME, Krumlauf R, McMahon AP. Evidence for a mikogenic effect of Wnt-1 in the developing mammalian central nervous system. Development 1994; 120(6):1453–1471.

    PubMed  CAS  Google Scholar 

  41. Bang AG, Papalopulu N et al. Expression of Pax-3 in the lateral neural plate is dependent on a Wnt-mediated signal from posterior nonaxial mesoderm. Dev Biol 1999; 212(2):366–380.

    Article  PubMed  CAS  Google Scholar 

  42. Lewis JL, Bonner J, Modrell M et al. Reiterated Wnt signaling during zebrafish neural crest development. Development 2004; 131(6):1299–1308.

    Article  PubMed  CAS  Google Scholar 

  43. Villanueva S, Glavic A, Ruiz P et al. Posteriorization by FGF, Wnt, and retinoic acid is required for neural crest induction. Dev Biol 2002; 241(2):289–301.

    Article  PubMed  CAS  Google Scholar 

  44. Glavic A, Silva F, Aybar MJ et al. Interplay between Notch signaling and the homeoprotein Xirol is required for neural crest induction in Xenopus embryos. Development 2004; 131(2):347–359.

    Article  PubMed  CAS  Google Scholar 

  45. Endo Y, Osumi N, Wakamatsu Y. Deltex/Dtx mediates NOTCH signaling in regulation of Bmp4 expression in cranial neural crest formation during avian development. Dev Growth Differ 2003; 45(3):241–248.

    Article  PubMed  CAS  Google Scholar 

  46. Endo Y, Osumi N, Wakamatsu Y. Bimodal functions of Notch-mediated signaling are involved in neural crest formation during avian ectoderm development. Development 2002; 129(4):863–873.

    PubMed  CAS  Google Scholar 

  47. Cornell RA, Eisen JS. Delta/Notch signaling promotes formation of zebrafish neural crest by repressing Neurogenin 1 function. Development 2002; 129(11):2639–2648.

    PubMed  CAS  Google Scholar 

  48. Cornell RA, Eisen JS. Delta signaling mediates segregation of neural crest and spinal sensory neurons from zebrafish lateral neural plate. Development 2000; 127(13):2873–2882.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Basch, M.L., Bronner-Fraser, M. (2006). Neural Crest Inducing Signals. In: Saint-Jeannet, JP. (eds) Neural Crest Induction and Differentiation. Advances in Experimental Medicine and Biology, vol 589. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46954-6_2

Download citation

Publish with us

Policies and ethics