Skip to main content

Reduction of Mycotoxin Contamination by Segregation with Sieves Prior to Maize Milling

  • Chapter
  • First Online:
  • 2725 Accesses

Part of the book series: Integrating Food Science and Engineering Knowledge into the Food Chain ((ISEKI-Food,volume 7))

Abstract

The strategies for reducing mycotoxin concentrations in maize are currently under development. Some approaches are directed toward resistance to infection or infection reduction in the grain, whereas others are aimed at detoxification of contaminated maize. To diminish contamination by natural mycotoxins, there are some strategies which imply grain handling.

The focus of this chapter is on the sieving process, with the purpose of analyzing the potential reduction of mycotoxin contamination in the cleanup step before maize storage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abramson D, House J, Nyachoti C. Reduction of deoxynivalenol in barley by treatment with aqueous sodium carbonate and heat. Mycopathologia. 2005;160:297–301.

    Article  CAS  Google Scholar 

  • Ariño A, Herrera M, Juan T, Estopañan G, Carramiñana JJ, Rota C, et al. Influence of agricultural practices on the contamination of maize by fumonisin mycotoxins. J Food Prot. 2009;72:898–902.

    Google Scholar 

  • Baird R, Abbas HK, Windham G, Williams P, Baird S, Ma P, et al. Identification of select fumonisin forming Fusarium species using PCR applications of the polyketide synthase gene and its relationship to fumonisin production in vitro. Int J Mol Sci. 2008;9:554–70.

    Article  CAS  Google Scholar 

  • Bandyopadhyay R, Kumar M, Leslie J. Relative severity of aflatoxin contamination of cereal crops in West Africa. Food Addit Contam. 2007;24:1109–14.

    Article  CAS  Google Scholar 

  • Berthiller F, Sulyok M, Krska R, Schuhmacher R. Chromatographic methods for the simultaneous determination of mycotoxins and their conjugates in cereals. Int J Food Microbiol. 2007;119:33–7.

    Article  CAS  Google Scholar 

  • Biernasiak J, Piotrowska M, Libudzisz Z. Detoxification of mycotoxins by probiotic preparation for broiler chickens”. Mycotoxin Res. 2006;22:230–5.

    Article  CAS  Google Scholar 

  • Blanc M. Sampling: the weak link in the sanitary quality control system of agricultural products. Mol Nutr Food Res. 2006;50:473–9.

    Article  CAS  Google Scholar 

  • Blandino M, Reyneri A, Colombari G, Pietri A. Comparison of integrated field programmes for the reduction of fumonisin contamination in maize kernels. Field Crop Res. 2009;111:284–9.

    Article  Google Scholar 

  • Brekke OL, Peplinski AJ, Griffin Jr EL. Cleaning trials for corn containing aflatoxins. Cereal Chem. 1975;52:198–204.

    CAS  Google Scholar 

  • Brera C, Catano C, De Santis B, Debegnach F, De Giacomo M, Pannunzi E, et al. Effect of industrial processing on the distribution of aflatoxins and zearalenone in corn-milling fractions. J Agric Food Chem. 2006;54:5014–9.

    Article  CAS  Google Scholar 

  • Broggi LE, Resnik SL, Pacin AM, Gonzalez HHL, Cano G, Taglieri D. Distribution of fumonisins in dry-milled corn fractions in Argentina. Food Addit Contam. 2002;19:465–9.

    Article  CAS  Google Scholar 

  • Broggi LE, Pacin AM, Gasparovic A, Sacchi C, Rothermel A, Gallay A, et al. Natural occurrence of aflatoxins, deoxynivalenol, fumonisins and zearalenone in maize from Entre Rios Province, Argentina. Mycotoxin Res. 2007;23:59–64.

    Article  CAS  Google Scholar 

  • Bullerman LB, Bianchini A. Stability of mycotoxins during food processing. Int J Food Microbiol. 2007;119:140–6.

    Article  CAS  Google Scholar 

  • Castegnaro M, Tozlovanu M, Wild C, Molinie A, Sylla A, Pfohl-Leszkowicz A. Advantages and drawbacks of immunoaffinity columns in analysis of mycotoxins in food. Mol Nutr Food Res. 2006;50:480–7.

    Article  CAS  Google Scholar 

  • Castells M, Marín S, Sanchis V, Ramos AJ. Fate of mycotoxins in cereals during extrusion cooking: a review. Food Addit Contam. 2005;22:150–7.

    Article  CAS  Google Scholar 

  • Cenkowski S, Pronyk C, Zmidzinska D, Muir WE. Decontamination of food products with superheated steam. J Food Eng. 2007;83:68–75.

    Article  CAS  Google Scholar 

  • Champeil A, Fourbet JF, Dore T. Effects of grain sampling procedures on Fusarium mycotoxin assays in wheat grains. J Agric Food Chem. 2004;52:6049–54.

    Article  CAS  Google Scholar 

  • Coker RD. Design of sampling plans for determination of mycotoxins in foods and feeds. In: Sinha KK, Bhatnagar D, editors. Mycotoxins in agriculture and food safety. New York: Marcel Dekker; 1998. pp. 109–33.

    Google Scholar 

  • Coker R, Nagler M, Defize P, Derksen G, Buchholz H, Putzka H, et al. The development of sampling plans for the determination of aflatoxin B1 in animal feedingstuffs. J AOAC Int. 2000;83:1252–8.

    CAS  Google Scholar 

  • Dorner JW. Biological control of aflatoxin contamination in corn using a nontoxigenic strain of Aspergillus flavus. J Food Prot. 2009;72:801–4.

    CAS  Google Scholar 

  • Fandohan P, Ahouansou R, Houssou P, Hell K, Marasas WFO, Wingfield MJ. Impact of mechanical shelling and dehulling on Fusarium infection and fumonisin contamination in maize. Food Addit Contam. 2006;23:415–21.

    Article  CAS  Google Scholar 

  • Folcher L, Jarry M, Weissenberger A, Gérault F, Eychenne N, Delos M, et al. Comparative activity of agrochemical treatments on mycotoxin levels with regard to corn borers and Fusarium mycoflora in maize (Zea mays L.) fields. Crop Prot. 2009;28:302–8.

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO). Maize in human nutrition. http://www.fao.org/docrep/t0395e/T0395E03.htm (1992).

  • Food Balance Sheet. Food and Agriculture Organization of the United Nations. http://faostat.fao.org/DesktopDefault.aspx?PageID=346&SelTab=4 (2002).

  • González HHL, Resnik SL, Vaamonde G. Influence of inoculum size on growth rate and lag phase of fungi isolated from Argentine corn. Int J Food Microbiol. 1987;4:111–7.

    Article  Google Scholar 

  • González HHL, Resnik SL, Vaamonde G. Influence of temperature on growth rate an lag phase of fungi isolated from Argentine corn. Int J Food Microbiol. 1988;6:179–83.

    Article  Google Scholar 

  • González HHL, Resnik SL, Boca RT, Marasas WFO. Mycoflora of Argentinian corn harvested in the main production area in 1990. Mycopathologia. 1995;130:29–36.

    Article  Google Scholar 

  • González HHL, Resnik SL, Pacin AM. Mycoflora of freshly harvested flint corn from northwestern provinces in Argentina. Mycopathologia. 2001;155:207–11.

    Google Scholar 

  • Hazel CM, Patel S. Influence of processing on trichothecene levels. Toxicol Lett. 2004;153:51–9.

    Article  CAS  Google Scholar 

  • Ioos R, Belhadj A, Menez M, Faure A. The effects of fungicides on Fusarium spp. and Microdochium nivale and their associated trichothecene mycotoxins in French naturally-infected cereal grains. Crop Prot. 2005;24:894–902.

    Article  CAS  Google Scholar 

  • JECFA. Safety evaluation of certain mycotoxins in food. 2001. Fifty Sixth Meeting of the Joint FAO/WHO Expert Committee on Food Additives. FAO Food Nutr Pap. 2001;74:419–555.

    Google Scholar 

  • Johansson AS, Whitaker TB, Hagler Jr WM, Giesbrecht FG, Young JH, Bowman DT. Testing shelled corn for aflatoxin, part I: estimation of variance components. J AOAC Int. 2000a;83:1264–9.

    CAS  Google Scholar 

  • Johansson AS, Whitaker TB, Giesbrecht FG, Hagler Jr WM, Young JH. Testing shelled corn for aflatoxin, part II: modeling the observed distribution of aflatoxin test results. J AOAC Int. 2000b;83:1270–8.

    CAS  Google Scholar 

  • Johansson AS, Whitaker TB, Giesbrecht FG, Hagler Jr WM, Young JH. Testing shelled corn for aflatoxin, part III: evaluating the performance of aflatoxin sampling plans. J AOAC Int. 2000c;83:1279–84.

    CAS  Google Scholar 

  • Jolly PE, Jiang Y, Ellis WO, Awuah RT, Appawu J, Nnedu O, et al. Association between aflatoxin exposure and health characteristics, liver function, hepatitis and malaria infections in Ghanaians. J Nutr Environ Med. 2007;16:242–57.

    Article  CAS  Google Scholar 

  • Jouany JP. Methods for preventing, decontaminating and minimizing the toxicity of mycotoxins in feeds. Anim Feed Sci Technol. 2007;137:342–62.

    Article  CAS  Google Scholar 

  • Kabak B. The fate of mycotoxins during thermal food processing. J Sci Food Agric. 2009;89:549–54.

    Article  CAS  Google Scholar 

  • Krska R, Schubert-Ullrich P, Molinelli A, Sulyok M, MacDonald S, Crews C. Mycotoxin analysis: an update. Food Addit Contam. 2008;25:152–63.

    Article  CAS  Google Scholar 

  • Lauren DR, Smith WA. Stability of the Fusarium mycotoxins nivalenol, deoxynivalenol and zearalenone in ground maize under typical cooking environments. Food Addit Contam. 2001;18:1011–6.

    Article  CAS  Google Scholar 

  • Logrieco A, Mulè G, Moretti A, Bottalico A. Toxigenic Fusarium species and mycotoxins associated with maize ear rot in Europe. Eur J Plant Pathol. 2002;108:597–609.

    Article  CAS  Google Scholar 

  • Macarthur R, Macdonald S, Brereton P, Murray A. Statistical modelling as an aid to the design of retail sampling plans for mycotoxins in food. Food Addit Contam. 2006;23:84–92.

    Article  CAS  Google Scholar 

  • Malone BM, Richard JL, Romer T, Johansson AJ, Whitaker TB 1998. Fumonisin reductionin corn by cleaning during storage discharge. In: O’Brian L, Blakeney AB, Ross AS, Wrigley CW, editors. North Melbourne, Vic. Cereal Chemistry Division, Royal Australian Chemical Institute, Cairns, Australia; 1998. pp. 372–9.

    Google Scholar 

  • Meister U, Springer M. Mycotoxins in cereals and cereal products - occurrence and changes during processing. J Appl Bot Food Qual. 2004;78:168–73.

    CAS  Google Scholar 

  • Meky FA, Turner PC, Ashcroft AE, Miller JD, Qiao YL, Roth MJ, et al. Development of a urinary biomarker of human exposure to deoxynivalenol. Food Chem Toxicol. 2003;41:265–73.

    Article  CAS  Google Scholar 

  • Miller JD. Mycotoxins in small grains and maize: old problems, new challenges. Food Addit Contam. 2008;25:219–30.

    Article  CAS  Google Scholar 

  • Moltó GA, González HHL, Resnik SL, Pereyra GA. Production of trichothecenes and zearalenone by isolates of Fusarium spp. from Argentinian maize. Food Addit Contam. 1997;14:263–8.

    Article  Google Scholar 

  • Neira MS, Pacin AM, Martínez EJ, Moltó G, Resnik SL. The effects of bakery processing on natural deoxynivalenol contamination. Int J Food Microbiol. 1997;37:21–5.

    Article  CAS  Google Scholar 

  • NIAE. National Institution of Agricultural Engineers. General report on the NIAE investigation into the technique of testing grain cleaning machinery, part II. Silsoe: NIAE; 1952. pp. 6.

    Google Scholar 

  • Pacin A. Micotoxinas contaminantes que no deberíamos olvidar. Enfasis Alim. 2006;6:40–8.

    Google Scholar 

  • Pacin AM, Resnik S Acido ciclopiazónico. In: Soriano del Castillo JM, editor. Micotoxinas en alimentos. Madrid: Díaz de Santos; 2007. pp. 335–52.

    Google Scholar 

  • Pacin AM, Broggi LE, Resnik SL, González HHL. Mycoflora and mycotoxins natural occurrence in corn from Entre Ríos province, Argentina. Mycotoxin Res. 2001;17:31–8.

    Article  CAS  Google Scholar 

  • Pacin AM, González HHL, Etcheverry M, Resnik SL, Vivas L, Espin S. Fungi associated with commodities from Ecuador. Mycopathologia. 2002;156:87–92.

    Article  Google Scholar 

  • Pacin AM, Ciancio Bovier E, González HHL, Whitechurch E, Martínez EJ, Resnik SL. Fungal and fumonisins contamination in Argentine maize (Zea mays L.) silo bags. J Agric Food Chem. 2009;57:2778–81.

    Article  CAS  Google Scholar 

  • Pacin AM, Cano G, Resnik SL, Villa D, Taglieri D, Ciancio E. Incidencia de la contaminación por aflatoxinas en maíz argentino, período 1995-2002, IV Congreso Latino americano de Micotoxicología. Seminario Anual Animal. La Habana, Cuba, 24–26 Sep 2003.

    Google Scholar 

  • Park JW, Kim Y-B. Effect of pressure cooking on aflatoxin B1 in rice. J Agric Food Chem. 2006;54:2431–5.

    Article  CAS  Google Scholar 

  • Pestka JJ, Smolinski AT. Deoxynivalenol: toxicology and potential effects on humans. J Toxicol Environ Health B Crit Rev. 2005;8:39–69.

    Article  CAS  Google Scholar 

  • Pirgozliev SR, Edwards SG, Hare MC, Jenkinson P. Strategies for the control of Fusarium head blight in cereals. Eur J Plant Pathol. 2003;109:731–42.

    Article  Google Scholar 

  • Resnik SL, Costarrica ML, Pacin A. Mycotoxins in Latin America and the Caribbean. Food Control. 1995;6:19–28.

    Article  Google Scholar 

  • Resnik SL, González HHL, Pacin A, Viora M, Caballero GM, Gros E. Cyclopiazonic acid and aflatoxins production by Aspergillus flavus isolated from Argentinian corn. Mycotoxin Res. 1996a;12:61–6.

    Article  CAS  Google Scholar 

  • Resnik S, Neira MS, Pacin A, Martínez E, Apro N, Latreite S. A survey of the natural occurrence of aflatoxins and zearalenone in Argentine field maize: 1983–1994. Food Addit Contam. 1996b;13(1):115–20.

    Article  CAS  Google Scholar 

  • Resnik SL, Taglieri D, Cano G, Pacin AM. Aflatoxinas en las fracciones obtenidas durante la limpieza del maíz. IV Congreso Latinoamericano de Micotoxicología. Seminario Anual Animal. Havana, Cuba. 2003a;9:24–26.

    Google Scholar 

  • Resnik S, Taglieri D, Ciancio Bouvier E, Cano G, Pacín A. Reducción de micotoxinas en maiz: limpieza. In: Jornadas Bonaerenses de Ciencia y Tecnologia, 17 December 2003, La Plata Provincia de Buenos Aires, Argentina; 2003b.

    Google Scholar 

  • Resnik, S.L., Villa, D. and Pacin, A. M. Distribución de fumonisinas en el maíz y en las fracciones obtenidas durante la limpieza de maíz. IV Congreso Latinoamericano de Micotoxicología. Seminario Anual Animal. Havana, Cuba. 2003c;9:24–26.

    Google Scholar 

  • Resnik SL, Villa D, Pacin AM. Muestreo de fumonisinas en maíz: función de distribución. In: Jornadas Bonaerenses de Ciencia y Tecnologia, 17 Dec 2003, La Plata Provincia de Buenos Aires, Argentina; 2003d.

    Google Scholar 

  • Samar MM, Resnik SL. Analytical methods for trichothecenes surveillance – an overview over the period 1990-2000. Food Sci Technol Int. 2002;8:257–68.

    CAS  Google Scholar 

  • Samar MM, Ferro Fontán C, Resnik SL, Pacin AM, Castillo MD. Distribution of deoxynivalenol in wheat, wheat flour, bran and gluten, and variability associated with the test procedure. J AOAC Int. 2003;86(3):551–6.

    CAS  Google Scholar 

  • Samar M, Resnik SL, González HHL, Pacin AM, Castillo MD. Deoxynivalenol reduction during the frying process of turnover pie covers. Food Control. 2007;18:1295–9.

    Article  CAS  Google Scholar 

  • Saunders DF, Meredith FI, Voss KA. Control of fumonisin: effects of processing. Environ Health Perspect. 2001;109:333–6.

    Article  CAS  Google Scholar 

  • Scudamore KA, Banks JB. The fate of mycotoxins during cereal processing. In: Barug D, van Egmond H, Lopez-Garcia R, van Osenbruggen T, Visconti A, editors. Meeting the mycotoxin menace. Wageningen: Wageningen Academic; 2003. pp. 165–81.

    Google Scholar 

  • Shephard GS. Impact of mycotoxins on human health in developing countries. Food Addit Contam. 2008;25:146–51.

    Article  CAS  Google Scholar 

  • Simonyan KJ, Yiljep YD. Investigating grain separation and cleaning efficiency distribution of a conventional stationary Rasp-bar sorghum thresher. Agric Eng Int: CIGR eJ. 2008. pp. 1–13.

    Google Scholar 

  • Simonyan KJ, Yiljep YD, Mudiare OJ. Modeling the grain cleaning process of a stationary sorghum thresher. Agric Eng Int: CIGR eJ. 2006. pp. 1–17.

    Google Scholar 

  • Solovey MM, Somoza C, Cano G, Pacin A, Resnik S. A survey of fumonisins, deoxynivalenol, zearalenone and aflatoxins in corn-based food products in Argentina. Food Addit Contam. 1999;16:325–9.

    Article  CAS  Google Scholar 

  • Spanjer MC. Sampling for grain quality. Stewart Postharvest Rev. 2007;3(6):1–6.

    Google Scholar 

  • Spanjer MC, Scholten JM, Kastrup S, Jorissen U, Schatzki TF, Toyofuku N. Sample comminution for mycotoxin analysis: dry milling or slurry mixing? Food Addit Contam. 2006;23:73–83.

    Article  CAS  Google Scholar 

  • Sydenham EW, van der Westhuizen L, Stockenstrom S, Shephard GS, Thiel PG. Fumonisin contaminated maize: physical treatment for the decontamination of bulk shipments. Food Addit Contam. 1994;11:25–32.

    Article  CAS  Google Scholar 

  • Torres A, González HHL, Etcheverry M, Resnik SL, Chulze S. Production of alternariol and alternariol mono-methyl ether by isolates of Alternaria spp. from Argentinian maize. Food Addit Contam. 1998;15(1):56–60.

    Article  CAS  Google Scholar 

  • Trigo-Stockli DM. Effect of processing on deoxynivalenol and other trichothecenes. Adv Exp Med Biol. 2002;504:181–8.

    Article  CAS  Google Scholar 

  • Trucksess MW. Mycotoxins. J AOAC Int. 2006;89:270–84.

    CAS  Google Scholar 

  • Trucksess M, Pohland A. Methods and method evaluation for mycotoxins. Mol Biotechnol. 2002;22:287–92.

    Article  CAS  Google Scholar 

  • Van Egmond HP, Jonker MA. Current regulations governing mycotoxins limits in food. In: Magan N, Olsen M, editors. Mycotoxins in food: detection and control. 1st ed. Cambridge: Woodhead Publishing/CRC Press LLC; 2004. pp. 88–110.

    Google Scholar 

  • Vanara F, Reyneri A, Blandino M. Fate of fumonisin B1 in the processing of whole maize kernels during dry-milling. Food Control. 2009;20:235–8.

    Article  CAS  Google Scholar 

  • Vigier B, Reid LM, Dwyer LM, Stewart DW, Sinha RC, Arnason JT, et al. Maize resistance to gibberella ear rot: symptoms, deoxynivalenol, and yield. Can J Plant Pathol. 2001;23:99–105.

    Article  CAS  Google Scholar 

  • Wagacha JM, Muthomi JW. Mycotoxin problem in Africa: current status, implications to food safety and health and possible management strategies. Int J Food Microbiol. 2008;124:1–12.

    Article  CAS  Google Scholar 

  • Whitaker, T.B. Sampling for mycotoxins. In Magan, N. and. Olsen (eds.), M. Mycotoxins in Food: Detection and Control First edition, Woodhead Publishing Ltd and CRC Press LLC, Cambridge, England. 2004. pp. 69–87.

    Article  CAS  Google Scholar 

  • Whitaker TB. Sampling foods for mycotoxins. Food Addit Contam. 2006;23:50–61.

    Article  CAS  Google Scholar 

  • Whitaker TB, Trucksess MW, Johansson AS, Giesbrecht FG, Hagler Jr WM, Bowman DT. Variability associated with testing shelled corn for fumonisin. J AOAC Int. 1998;81:1162–8.

    CAS  Google Scholar 

  • Whitaker TB, Doko MB, Maestroni BM, Slate AB, Ogunbanwo BF. Evaluating the performance of sampling plans to detect fumonisin Bi in maize lots marketed in Nigeria. J AOAC Int. 2007;90:1050–9.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana M. Pacin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pacin, A.M., Resnik, S.L. (2012). Reduction of Mycotoxin Contamination by Segregation with Sieves Prior to Maize Milling. In: McElhatton, A., do Amaral Sobral, P. (eds) Novel Technologies in Food Science. Integrating Food Science and Engineering Knowledge into the Food Chain, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7880-6_10

Download citation

Publish with us

Policies and ethics