Skip to main content

Animal Cell Mutants Defective in Heparan Sulfate Polymerization

  • Chapter
Heparin and Related Polysaccharides

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 313))

Abstract

Proteoglycans mediate diverse cellular processes by interacting with a variety of protein ligands. Some of these interactions depend on the proteoglycan core protein, but most involve electrostatic interactions with the glycosaminoglycan chains attached to the core protein (Jackson et al., 1991; Kjellén and Lindahl, 1991; Esko, 1991). These latter interactions depend on the composition and arrangement of monosaccharide residues in the chains, which in turn depend on the glycosyltransferases, sulfotransferases, and epimerases that catalyze chain polymerization and modification. Thus, the biological activity of proteoglycans is intimately related to the regulation of glycosaminoglycan biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barne, K.J., and Esko, J.D., 1989, Undersulfated heparan sulfate in a Chinese hamster ovary cell mutant defective in heparan sulfate N-sulfotransferase, J. Biol. Chem., 264:8059.

    Google Scholar 

  • Bame, K.J., Lidholt, K., Lindahl, U., and Esko, J.D., 1991a, Biosynthesis of heparan sulfate. Coordination of polymer-modification reactions in a Chinese hamster ovary cell mutant defective in N-sulfotransferase, J. Biol. Chem., 266:10287.

    PubMed  CAS  Google Scholar 

  • Bame, K.J., Reddy, R.V., and Esko, J.D., 1991b, Coupling of N-deacetylation and N-sulfation in a Chinese hamster ovary cell mutant defective in heparan sulfate N-sulfotransferase, J. Biol. Chem., 266:12461.

    PubMed  CAS  Google Scholar 

  • Cheifetz, S., and Massagué, J., 1989, Transforming growth factor-beta (TGF-beta) receptor proteoglycan. Cell surface expression and ligand binding in the absence of glycosaminoglycan chains, J. Biol. Chem., 264:12025.

    PubMed  CAS  Google Scholar 

  • Elgavish, A., Esko, J.D., and Knurr, A., 1988, Chinese hamster ovary cell mutants deficient in an anion exchanger functionally similar to the erythroid band 3, J. Biol. Chem., 263:18607.

    PubMed  CAS  Google Scholar 

  • Esko, J.D., Stewart, T.E., Taylor, W.H., 1985, Animal cell mutants defective in glycosaminoglycan biosynthesis, Proc. Natl. Acad. Sci. USA, 82:3197.

    Article  PubMed  CAS  Google Scholar 

  • Esko, J.D., Elgavish, A., Prasthofer, T., Taylor, W.H., and Weinke, J.L., 1986, Sulfate transport-deficient mutants of Chinese hamster ovary cells. Sulfation of glycosaminoglycans dependent on cysteine, J. Biol. Chem., 261:15725.

    PubMed  CAS  Google Scholar 

  • Esko, J.D., Weinke, J.L., Taylor, W.H., Ekborg, G., Rodén, L., Anantharamaiah, G., and Gawish. A., 1987, Inhibition of chondroitin and heparan sulfate biosynthesis in Chinese hamster ovary cell mutants defective in galactosyltransferase I, J. Biol. Chem., 262:12189.

    PubMed  CAS  Google Scholar 

  • Esko, J.D., Rostand, K.S., and Weinke, J.L., 1988, Tumor formation dependent on proteoglycan biosynthesis, Science, 41:1092.

    Article  Google Scholar 

  • Esko, J.D., 1989, Replica plating of animal cells, Meth. in Cell Biol., 32:387.

    Article  CAS  Google Scholar 

  • Esko, J.D., 1991, Genetic analysis of proteoglycan structure, function and metabolism, Curr. Opin. Cell Biol., 3:805.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, R.L., Busch, S.J., and Cardin, A.D., 1991, Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes, Physiol. Rev., 71:481.

    PubMed  CAS  Google Scholar 

  • Kaesberg, P.R., Ershler, W.B., Esko, J.D., and Mosher, D.F., 1989, Chinese hamster ovary cell adhesion to human platelet thrombospondin is dependent on cell surface heparan sulfate proteoglycan, J. Clin. Invest., 83:994.

    Article  PubMed  CAS  Google Scholar 

  • Kjellén, L. and Lindahl, U., 1991, Proteoglycans: structure and interactions, Ann. Rev. Biochem., 60:443.

    Article  PubMed  Google Scholar 

  • LeBaron, R.G., Esko, J.D., Woods, A., Johansson, S., and Höök, M., 1988, Adhesion of glycosaminoglycan-deficient Chinese hamster ovary cell mutants to fibronectin substrata, J. Cell Biol., 106:945.

    Article  PubMed  CAS  Google Scholar 

  • LeBaron, R.G., Höök, A., Esko, J.D., Gay, S., and Höök, M., 1989, Binding of heparan sulfate to type V collagen. A mechanism of cell-substrate adhesion, J. Biol. Chem., 264:7950.

    PubMed  CAS  Google Scholar 

  • Lidholt, K., Weinke, J.L., Kiser, C.S., Lugemwa, F.N., Bame, K.J., Cheifetz, S., Massagué, J., Lindahl, U., and Esko, J.D., 1992, Chinese hamster ovary cell mutants defective in heparan sulfate biosynthesis, Proc. Natl. Acad. Sci. USA, in press.

    Google Scholar 

  • Lugemwa, F.N. and Esko, J.D., 1991, Estradiol-β-D-xyloside, an efficient primer of heparan sulfate biosynthesis, J, Biol. Chem., 266:6674.

    CAS  Google Scholar 

  • Marynen, P., Zhang, J., Cassiman, J.J., Van den Berghe, H., and David, G., 1989, Partial primary structure of the 48-and 90-kilodalton core proteins of cell surface-associated heparan sulfate proteoglycans of lung fibroblasts. Prediction of an integral membrane domain and evidence for multiple distinct core proteins at the cell surface of human lung fibroblasts, J. Biol. Chem., 264:7017.

    PubMed  CAS  Google Scholar 

  • Murphy-Ullrich, J.E., Westrick, L.G., Esko, J.D., and Mosher D.F., 1988, Altered metabolism of thrombospondin by Chinese hamster ovary cells defective in glycosaminoglycan synthesis, J. Biol. Chem., 263:6400.

    PubMed  CAS  Google Scholar 

  • Repraeger, A.C., Krufka, A., and Olwin, B.B., 1991, Requirement for heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation, Science, 252:1705.

    Article  Google Scholar 

  • Shieh, M.-T., WuDunn, D., Montgomery, R.I., Esko, J.D., and Spear, P.G., 1991, Heparan sulfate proteoglycans are cell surface receptors for Herpes simplex virus, J. Cell Biol., submitted.

    Google Scholar 

  • Yayon, A., Klagsbrun, M., Esko, J.D., Leder, P., and Grnitz, D.M., 1991, Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor, Cell, 64:841.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Esko, J.D. (1992). Animal Cell Mutants Defective in Heparan Sulfate Polymerization. In: Lane, D.A., Björk, I., Lindahl, U. (eds) Heparin and Related Polysaccharides. Advances in Experimental Medicine and Biology, vol 313. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2444-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2444-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2446-9

  • Online ISBN: 978-1-4899-2444-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics