Skip to main content

Optical Coherence Elastography

  • Reference work entry
Optical Coherence Tomography

Abstract

The mechanical properties of tissue are pivotal in its function and behavior, and are often modified by disease. From the nano- to the macro-scale, many tools have been developed to measure tissue mechanical properties, both to understand the contribution of mechanics in the origin of disease and to improve diagnosis. Optical coherence elastography is applicable to the intermediate scale, between that of cells and whole organs, which is critical in the progression of many diseases and not widely studied to date. In optical coherence elastography, a mechanical load is imparted to a tissue and the resulting deformation is measured using optical coherence tomography. The deformation is used to deduce a mechanical parameter, e.g., Young’s modulus, which is mapped into an image, known as an elastogram. In this chapter, we review the development of optical coherence elastography and report on the latest developments. We provide a focus on the underlying principles and assumptions, techniques to measure deformation, loading mechanisms, imaging probes and modeling, including the inverse elasticity problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Y.C. Fung, Biomechanics: Mechanical Properties of Living Tissues (Springer, New York, 1981)

    Book  Google Scholar 

  2. K.J. Parker, M.M. Doyley, D.J. Rubens, Imaging the elastic properties of tissue: the 20 year perspective. Phys. Med. Biol. 56, R1 (2011)

    Article  ADS  Google Scholar 

  3. J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, X. Li, Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason. Imaging 13, 111–134 (1991)

    Article  Google Scholar 

  4. R. Muthupillai, D.J. Lomas, P.J. Rossman, J.F. Greenleaf, A. Manduca, R.L. Ehman, Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269, 1854–1857 (1995)

    Article  ADS  Google Scholar 

  5. B.S. Garra, E.I. Cespedes, J. Ophir, S.R. Spratt, R.A. Zuurbier, C.M. Magnant, M.F. Pennanen, Elastography of breast lesions: initial clinical results. Radiology 202, 79–86 (1997)

    Article  Google Scholar 

  6. J. Foucher, E. Chanteloup, J. Vergniol, L. Castéra, B. Le Bail, X. Adhoute, J. Bertet, P. Couzigou, V. de Lédinghen, Diagnosis of cirrhosis by transient elastography (FibroScan): a prospective study. Gut 55, 403–408 (2006)

    Article  Google Scholar 

  7. D.L. Cochlin, R.H. Ganatra, D.F.R. Griffiths, Elastography in the detection of prostatic cancer. Clin. Radiol. 57, 1014–1020 (2002)

    Article  Google Scholar 

  8. S. Wojcinski, A. Farrokh, S. Weber, A. Thomas, T. Fischer, T. Slowinski, W. Schmidtand, F. Degenhardt, Multicenter study of ultrasound real-time tissue elastography in 779 cases for the assessment of breast lesions: improved diagnostic performance by combining the BI-RADS – US classification system with sonoelastography. Ultraschall Med. 31, 484–491 (2010)

    Article  Google Scholar 

  9. J.M. Schmitt, OCT elastography: imaging microscopic deformation and strain of tissue. Opt. Express 3, 199–211 (1998)

    Article  ADS  Google Scholar 

  10. D.D. Duncan, S.J. Kirkpatrick, Processing algorithms for tracking speckle shifts in optical elastography of biological tissues. J. Biomed. Opt. 6, 418–426 (2001)

    Article  ADS  Google Scholar 

  11. S.J. Kirkpatrick, R.K. Wang, D.D. Duncan, M. Kulesz-Martin, K. Lee, Imaging the mechanical stiffness of skin lesions by in vivo acousto-optical elastography. Opt. Express 14, 9770–9779 (2006)

    Article  ADS  Google Scholar 

  12. K. Daoudi, A.C. Boccara, E. Bossy, Detection and discrimination of optical absorption and shear stiffness at depth in tissue-mimicking phantoms by transient optoelastography. Appl. Phys. Lett. 94, 154103 (2009)

    Article  ADS  Google Scholar 

  13. D.S. Elson, R. Li, C. Dunsby, R. Eckersley, M.X. Tang, Ultrasound-mediated optical tomography: a review of current methods. J. R. Soc. Interface Focus 1, 632–648 (2011)

    Article  Google Scholar 

  14. S. Li, K.D. Mohan, W.W. Sanders, A.L. Oldenburg, Toward soft-tissue elastography using digital holography to monitor surface acoustic waves. J. Biomed. Opt. 16, 116005–116005 (2011)

    Article  ADS  Google Scholar 

  15. K.D. Mohan, A.L. Oldenburg, Elastography of soft materials and tissues by holographic imaging of surface acoustic waves. Opt. Express 20, 18887–18897 (2012)

    Article  ADS  Google Scholar 

  16. W. Michael Lai, D. Rubin, E. Krempl, Introduction to Continuum Mechanics (Butterworth-Heinemann, Oxford, 2010)

    Google Scholar 

  17. J.F. Greenleaf, M. Fatemi, M. Insana, Selected methods for imaging elastic properties of biological tissues. Annu. Rev. Biomed. Eng. 5, 57–78 (2003)

    Article  Google Scholar 

  18. K.J. Parker, L.S. Taylor, S. Gracewski, D.J. Rubens, A unified view of imaging the elastic properties of tissue. J. Acoust. Soc. Am. 117, 2705–2712 (2005)

    Article  ADS  Google Scholar 

  19. B.F. Kennedy, T.R. Hillman, R.A. McLaughlin, B.C. Quirk, D.D. Sampson, In vivo dynamic optical coherence elastography using a ring actuator. Opt. Express 17, 21762–21772 (2009)

    Article  ADS  Google Scholar 

  20. S.J. Kirkpatrick, D.D. Duncan, Optical assessment of tissue mechanics, in Handbook of Optical Biomedical Diagnostics, ed. by V.V. Tuchin (SPIE-The International Society for Optical Engineering, Bellingham, 2002), pp. 1037–1084

    Google Scholar 

  21. S. Abbas, B. Jonathan, L. Chris, B.P. Donald, Measuring the elastic modulus of ex vivo small tissue samples. Phys. Med. Biol. 48, 2183 (2003)

    Article  Google Scholar 

  22. T.A. Krouskop, T.M. Wheeler, F. Kallel, B.S. Garra, T. Hall, Elastic moduli of breast and prostate tissues under compression. Ultrason. Imaging 20, 260–274 (1998)

    Article  Google Scholar 

  23. X. Liang, M. Orescanin, K.S. Toohey, M.F. Insana, S.A. Boppart, Acoustomotive optical coherence elastography for measuring material mechanical properties. Opt. Lett. 34, 2894–2896 (2009)

    Article  ADS  Google Scholar 

  24. X. Liang, S.A. Boppart, Biomechanical properties of in vivo human skin from dynamic optical coherence elastography. IEEE Trans. Biomed. Eng. 57, 953–959 (2010)

    Article  Google Scholar 

  25. R. Manapuram, S. Aglyamov, F.M. Menodiado, M. Mashiatulla, S. Wang, S.A. Baranov, J. Li, S. Emelianov, K.V. Larin, Estimation of shear wave velocity in gelatin phantoms utilizing PhS-SSOCT. Laser Phys. 22, 1439–1444 (2012)

    Article  ADS  Google Scholar 

  26. M. Razani, A. Mariampillai, C. Sun, T.W.H. Luk, V.X.D. Yang, M.C. Kolios, Feasibility of optical coherence elastography measurements of shear wave propagation in homogeneous tissue equivalent phantoms. Biomed. Opt. Express 3, 972–980 (2012)

    Article  Google Scholar 

  27. A. Curatolo, B.F. Kennedy, D.D. Sampson, T.R. Hillman, Speckle in optical coherence tomography, in Advanced Biophotonics: Tissue Optical Sectioning, ed. by R.K. Wang, V.V. Tuchin (Taylor & Francis, London, 2013)

    Google Scholar 

  28. E. Archibald, A.E. Ennos, P.A. Taylor, A laser speckle interferometer for the detection of surface movements and vibrations, in Optical Instruments and Techniques, ed. by J.H. Dickson (Oriel, Newcastle upon Tyne, 1969), p. 265

    Google Scholar 

  29. J.A. Leendertz, Interferometric displacement measurement on scattering surfaces utilizing speckle effect. J. Phys. E Sci. Instrum. 3, 214 (1970)

    Article  ADS  Google Scholar 

  30. R. Chan, A. Chau, W. Karl, S. Nadkarni, A. Khalil, N. Iftimia, M. Shishkov, G. Tearney, M. Kaazempur-Mofrad, B. Bouma, OCT-based arterial elastography: robust estimation exploiting tissue biomechanics. Opt. Express 12, 4558–4572 (2004)

    Article  ADS  Google Scholar 

  31. J. Rogowska, N. Patel, J. Fujimoto, M. Brezinski, Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues. Heart 90, 556–562 (2004)

    Article  Google Scholar 

  32. F.M. Hendriks, D. Brokken, C.W. Oomens, D.L. Bader, F.P. Baaijens, The relative contributions of different skin layers to the mechanical behavior of human skin in vivo using suction experiments. Med. Eng. Phys. 28, 259–266 (2006)

    Article  Google Scholar 

  33. S.J. Kirkpatrick, R.K. Wang, D.D. Duncan, OCT-based elastography for large and small deformations. Opt. Express 14, 11585–11597 (2006)

    Article  ADS  Google Scholar 

  34. H.J. Ko, W. Tan, R. Stack, S.A. Boppart, Optical coherence elastography of engineered and developing tissue. Tissue Eng. 12, 63–73 (2006)

    Article  Google Scholar 

  35. D. Duncan, S. Kirkpatrick, Performance analysis of a maximum-likelihood speckle motion estimator. Opt. Express 10, 927–941 (2002)

    Article  ADS  Google Scholar 

  36. B.F. Kennedy, T.R. Hillman, A. Curatolo, D.D. Sampson, Speckle reduction in optical coherence tomography by strain compounding. Opt. Lett. 35, 2445–2447 (2010)

    Article  ADS  Google Scholar 

  37. J. Meunier, Tissue motion assessment from 3D echographic speckle tracking. Phys. Med. Biol. 43, 1241 (1998)

    Article  Google Scholar 

  38. S. Gahagnon, Y. Mofid, G. Josse, F. Ossant, Skin anisotropy in vivo and initial natural stress effect: a quantitative study using high-frequency static elastography. J. Biomech. 45, 2860–2865 (2012)

    Article  Google Scholar 

  39. J.-L. Gennisson, S. Catheline, S. Chaffai, M. Fink, Transient elastography in anisotropic medium: application to the measurement of slow and fast shear wave speeds in muscles. J. Acoust. Soc. Am. 114, 536–541 (2003)

    Article  ADS  Google Scholar 

  40. R.K. Wang, Z. Ma, S.J. Kirkpatrick, Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue. Appl. Phys. Lett. 89, 144103-144103-144103 (2006)

    ADS  Google Scholar 

  41. R.K. Wang, S. Kirkpatrick, M. Hinds, Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time. Appl. Phys. Lett. 90, 164105 (2007)

    Article  ADS  Google Scholar 

  42. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J.F. de Boer, J.S. Nelson, Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt. Lett. 25, 114–116 (2000)

    Article  ADS  Google Scholar 

  43. J.W. Goodman, Statistical Optics (Wiley, New York, 1985)

    Google Scholar 

  44. B. Park, M.C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, J. de Boer, Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm. Opt. Express 13, 3931–3944 (2005)

    Article  ADS  Google Scholar 

  45. R.K. Wang, A.L. Nuttall, Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study. J. Biomed. Opt. 15, 056005–056005 (2010)

    Article  ADS  Google Scholar 

  46. X. Liang, S.G. Adie, R. John, S.A. Boppart, Dynamic spectral-domain optical coherence elastography for tissue characterization. Opt. Express 18, 14183–14190 (2010)

    Article  ADS  Google Scholar 

  47. B.F. Kennedy, M. Wojtkowski, M. Szkulmowski, K.M. Kennedy, K. Karnowski, D.D. Sampson, Improved measurement of vibration amplitude in dynamic optical coherence elastography. Biomed. Opt. Express 3, 3138–3152 (2012)

    Article  Google Scholar 

  48. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, M. Wojtkowski, Flow velocity estimation using joint spectral and time domain optical coherence tomography. Opt. Express 16, 6008–6025 (2008)

    Article  ADS  Google Scholar 

  49. S.G. Adie, B.F. Kennedy, J.J. Armstrong, S.A. Alexandrov, D.D. Sampson, Audio frequency in vivo optical coherence elastography. Phys. Med. Biol. 54, 3129 (2009)

    Article  Google Scholar 

  50. S.-R. Huang, R.M. Lerner, K.J. Parker, On estimating the amplitude of harmonic vibration from the Doppler spectrum of reflected signals. J. Acoust. Soc. Am. 88, 2702–2712 (1990)

    Article  ADS  Google Scholar 

  51. B.F. Kennedy, X. Liang, S.G. Adie, D.K. Gerstmann, B.C. Quirk, S.A. Boppart, D.D. Sampson, In vivo three-dimensional optical coherence elastography. Opt. Express 19, 6623–6634 (2011)

    Article  ADS  Google Scholar 

  52. X. Liang, A.L. Oldenburg, V. Crecea, E.J. Chaney, S.A. Boppart, Optical micro-scale mapping of dynamic biomechanical tissue properties. Opt. Express 16, 11052–11065 (2008)

    Article  ADS  Google Scholar 

  53. B.F. Kennedy, S.H. Koh, R.A. McLaughlin, K.M. Kennedy, P.R.T. Munro, D.D. Sampson, Strain estimation in phase-sensitive optical coherence elastography. Biomed. Opt. Express 3, 1865–1879 (2012)

    Article  Google Scholar 

  54. C. Li, G. Guan, R. Reif, Z. Huang, R.K. Wang, Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography. J. R. Soc. Interface 9, 831–841 (2011)

    Article  Google Scholar 

  55. C. Li, Z. Huang, R.K. Wang, Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry. Opt. Express 19, 10153–10163 (2011)

    Article  ADS  Google Scholar 

  56. C. Li, G. Guan, X. Cheng, Z. Huang, R.K. Wang, Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography. Opt. Lett. 37, 722–724 (2012)

    Article  ADS  Google Scholar 

  57. R.K. Manapuram, S.R. Aglyamov, F.M. Monediado, M. Mashiatulla, J. Li, S.Y. Emelianov, K.V. Larin, In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography. J. Biomed. Opt. 17, 100501–100501 (2012)

    Article  ADS  Google Scholar 

  58. M. del Socorro Hernández-Montes, C. Furlong, J.J. Rosowski, N. Hulli, E. Harrington, J.T. Cheng, M.E. Ravicz, F.M. Santoyo, Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes. J. Biomed. Opt. 14, 034023–034023 (2009)

    Article  Google Scholar 

  59. M. Leclercq, M. Karray, V. Isnard, F. Gautier, P. Picart, Quantitative evaluation of skin vibration induced by a bone-conduction device using holographic recording in a quasi-time-averaging regime, in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2012), paper DW1C

    Google Scholar 

  60. G. Eskin, J. Ralston, On the inverse boundary value problem for linear isotropic elasticity. Inverse Probl. 18, 907 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. B.A. Auld, General electromechanical reciprocity relations applied to the calculation of elastic wave scattering coefficients. Wave Motion 1, 3–10 (1979)

    Article  Google Scholar 

  62. E.R. Engdahl, R. van der Hilst, R. Buland, Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull. Seismol. Soc. Am. 88, 722–743 (1998)

    Google Scholar 

  63. F.-C. Lin, M.P. Moschetti, M.H. Ritzwoller, Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophys. J. Int. 173, 281–298 (2008)

    Article  ADS  Google Scholar 

  64. T.J. Royston, H.A. Mansy, R.H. Sandler, Excitation and propagation of surface waves on a viscoelastic half-space with application to medical diagnosis. J. Acoust. Soc. Am. 106, 3678–3686 (1999)

    Article  ADS  Google Scholar 

  65. X. Zhang, J.F. Greenleaf, Estimation of tissue’s elasticity with surface wave speed. J. Acoust. Soc. Am. 122, 2522–2525 (2007)

    Article  ADS  Google Scholar 

  66. G. Pedrini, S. Schedin, H.J. Tiziani, Pulsed digital holography combined with laser vibrometry for 3D measurements of vibrating objects. Opt. Lasers Eng. 38, 117–129 (2002)

    Article  Google Scholar 

  67. L. Mertz, Real-time fringe-pattern analysis. Appl. Opt. 22, 1535–1539 (1983)

    Article  ADS  Google Scholar 

  68. K.R. Nightingale, M.L. Palmeri, R.W. Nightingale, G.E. Trahey, On the feasibility of remote palpation using acoustic radiation force. J. Acoust. Soc. Am. 110, 625–634 (2001)

    Article  ADS  Google Scholar 

  69. Y. Takuma, K. Nouso, Y. Morimoto, J. Tomokuni, A. Sahara, N. Toshikuni, H. Takabatake, H. Shimomura, A. Doi, I. Sakakibara, K. Matsueda, H. Yamamoto, Measurement of spleen stiffness by acoustic radiation force impulse imaging identifies cirrhotic patients with esophageal varices. Gastroenterology 144, 92–101 (2013)

    Article  Google Scholar 

  70. http://www.medical.siemens.com/webapp/wcs/stores/servlet/PSGenericDisplay∼q_catalogId∼e_-1∼a_langId∼e_-1∼a_pageId∼e_110950∼a_storeId∼e_10001.htm

  71. G. van. Soest, R. R. Bouchard, F. Mastik, N. de. Jong, A. F. W. van der Steen, Robust intravascular optical coherence elastography driven by acoustic radiation pressure, in Optical Coherence Tomography and Coherence Techniques III (Optical Society of America, 2007), paper 66270EE

    Google Scholar 

  72. W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, Z. Chen, Phase-resolved acoustic radiation force optical coherence elastography. J. Biomed. Opt. 17, 110505–110505 (2012)

    Article  ADS  Google Scholar 

  73. E. Bossy, A.R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, M. Fink, Transient optoelastography in optically diffusive media. Appl. Phys. Lett. 90, 174111–174113 (2007)

    Article  ADS  Google Scholar 

  74. V. Crecea, A.L. Oldenburg, X. Liang, T.S. Ralston, S.A. Boppart, Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials. Opt. Express 17, 23114–23122 (2009)

    Article  ADS  Google Scholar 

  75. A.L. Oldenburg, S.A. Boppart, Resonant acoustic spectroscopy of soft tissues using embedded magnetomotive nanotransducers and optical coherence tomography. Phys. Med. Biol. 55, 1189–1201 (2010)

    Article  Google Scholar 

  76. A.L. Oldenburg, F.J.J. Toublan, K.S. Suslick, A. Wei, S.A. Boppart, Magnetomotive contrast for in vivo optical coherence tomography. Opt. Express 13, 6597–6614 (2005)

    Article  ADS  Google Scholar 

  77. A. Grimwood, L. Garcia, J. Bamber, J. Holmes, P. Woolliams, P. Tomlins, Q.A. Pankhurst, Elastographic contrast generation in optical coherence tomography from a localized shear stress. Phys. Med. Biol. 55, 5515 (2010)

    Article  Google Scholar 

  78. A.L. Oldenburg, G. Wu, D. Spivak, F. Tsui, A.S. Wolberg, T.H. Fischer, Imaging and elastometry of blood clots using magnetomotive optical coherence tomography and labeled platelets. IEEE J. Sel. Top. Quantum Electron. 18, 1100–1121 (2012)

    Article  Google Scholar 

  79. R. John, E.J. Chaney, S.A. Boppart, Dynamics of magnetic nanoparticle-based contrast agents in tissues tracked using magnetomotive optical coherence tomography. IEEE J. Sel. Top. Quantum Electron. 16, 691–697 (2010)

    Article  Google Scholar 

  80. J. Kim, A. Ahmad, S.A. Boppart, Dual-coil magnetomotive optical coherence tomography for contrast enhancement in liquids. Opt. Express 21, 7139–7147 (2013)

    Article  ADS  Google Scholar 

  81. M. Fatemi, J.F. Greenleaf, Ultrasound-stimulated vibro-acoustic spectrography. Science 280, 82–85 (1998)

    Article  ADS  Google Scholar 

  82. M. Fatemi, J.F. Greenleaf, Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission. Proc. Natl. Acad. Sci. U. S. A. 96, 6603–6608 (1999)

    Article  ADS  Google Scholar 

  83. M.W. Urban, A. Alizad, W. Aquino, J.F. Greenleaf, M. Fatemi, A review of vibro-acoustography and its applications in medicine. Curr. Med. Imaging Rev. 7, 350–359 (2011)

    Article  Google Scholar 

  84. J. Greenleaf, M. Fatemi, Vibro-acoustography: speckle free ultrasonic imaging. Med. Phys. 34, 2527–2528 (2007)

    Article  Google Scholar 

  85. J.F. Greenleaf, M. Fatemi, M. Belohlavek, Ultrasound stimulated vibro-acoustography. Lect. Notes Comput. Sci. 3117, 1–10 (2004)

    Article  Google Scholar 

  86. M. Fatemi, L.E. Wold, A. Alizad, J.F. Greenleaf, Vibro-acoustic tissue mammography. IEEE Trans. Med. Imaging 21, 1–8 (2002)

    Article  Google Scholar 

  87. S.G. Adie, X. Liang, B.F. Kennedy, R. John, D.D. Sampson, S.A. Boppart, Spectroscopic optical coherence elastography. Opt. Express 18, 25519–25534 (2010)

    Article  ADS  Google Scholar 

  88. C. Li, G. Guan, Z. Huang, M. Johnstone, R.K. Wang, Noncontact all-optical measurement of corneal elasticity. Opt. Lett. 37, 1625–1627 (2012)

    Article  ADS  Google Scholar 

  89. D. Alonso-Caneiro, K. Karnowski, B.J. Kaluzny, A. Kowalczyk, M. Wojtkowski, Assessment of corneal dynamics with high-speed swept source optical coherence tomography combined with an air puff system. Opt. Express 19, 14188–14199 (2011)

    Article  ADS  Google Scholar 

  90. S. Wang, J. Li, R.K. Manapuram, F.M. Menodiado, D.R. Ingram, M.D. Twa, A.J. Lazar, D.C. Lev, R.E. Pollock, K.V. Larin, Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system. Opt. Lett. 37, 5184–5186 (2012)

    Article  ADS  Google Scholar 

  91. J.P. Williamson, R.A. McLaughlin, W.J. Noffsinger, A.L. James, V.A. Baker, A. Curatolo, J.J. Armstrong, A. Regli, K.L. Shepherd, G.B. Marks, Elastic properties of the central airways in obstructive lung diseases measured using anatomical optical coherence tomography. Am. J. Respir. Crit. Care Med. 183, 612–619 (2011)

    Article  Google Scholar 

  92. A. Chau, R. Chan, M. Shishkov, B. MacNeill, N. Iftimia, G. Tearney, R. Kamm, B. Bouma, M. Kaazempur-Mofrad, Mechanical analysis of atherosclerotic plaques based on optical coherence tomography. Ann. Biomed. Eng. 32, 1494–1503 (2004)

    Article  Google Scholar 

  93. R. Karimi, T. Zhu, B.E. Bouma, M.R. Kaazempur Mofrad, Estimation of nonlinear mechanical properties of vascular tissues via elastography. Cardiovasc. Eng. 8, 191–202 (2008)

    Article  Google Scholar 

  94. J. Yin, H.C. Yang, X. Li, J. Zhang, Q. Zhou, C. Hu, K.K. Shung, Z. Chen, Integrated intravascular optical coherence tomography ultrasound imaging system. J. Biomed. Opt. 15, 010512 (2010)

    Article  ADS  Google Scholar 

  95. J. Sliwa, Y. Liu, Optical coherence tomography catheter for elastographic property mapping of lumens utilizing micropalpation, U.S. Patent 20,120,265,062, 2012

    Google Scholar 

  96. X. Li, C. Chudoba, T. Ko, C. Pitris, J.G. Fujimoto, Imaging needle for optical coherence tomography. Opt. Lett. 25, 1520–1522 (2000)

    Article  ADS  Google Scholar 

  97. R.A. McLaughlin, B.C. Quirk, A. Curatolo, R.W. Kirk, L. Scolaro, D. Lorenser, P. Robbins, B. Wood, C. Saunders, D. Sampson, Imaging of breast cancer with optical coherence tomography needle probes: feasibility and initial results. IEEE J. Sel. Top. Quantum Electron. 18, 1184–1191 (2012)

    Article  Google Scholar 

  98. K.M. Kennedy, B.F. Kennedy, R.A. McLaughlin, D.D. Sampson, Needle optical coherence elastography for tissue boundary detection. Opt. Lett. 37, 2310–2312 (2012)

    Article  ADS  Google Scholar 

  99. O.A. Shergold, N.A. Fleck, Experimental investigation into the deep penetration of soft solids by sharp and blunt punches, with application to the piercing of skin. J. Biomech. Eng. – T. ASME 127, 838 (2005)

    Article  Google Scholar 

  100. C. Li, S. Li, G. Guan, C. Wei, Z. Huang, R.K. Wang, A comparison of laser ultrasound measurements and finite element simulations for evaluating the elastic properties of tissue mimicking phantoms. Opt. Laser Technol. 44, 866–871 (2012)

    Article  ADS  Google Scholar 

  101. M. Bilgen, Target detectability in acoustic elastography. IEEE T. Ultrason. Ferroelectr. 46, 1128–1133 (1999)

    Article  Google Scholar 

  102. F. Kallel, M. Bertrand, J. Ophir, Fundamental limitations on the contrast-transfer efficiency in elastography: an analytic study. Ultrasound Med. Biol. 22, 463–470 (1996)

    Article  Google Scholar 

  103. H. Ponnekanti, J. Ophir, Y. Huang, I. Cespedes, Fundamental mechanical limitations on the visualization of elasticity contrast in elastography. Ultrasound Med. Biol. 21, 533–543 (1995)

    Article  Google Scholar 

  104. T. Varghese, J. Ophir, An analysis of elastographic contrast-to-noise ratio. Ultrasound Med. Biol. 24, 915–924 (1998)

    Article  Google Scholar 

  105. G. Lamouche, B.F. Kennedy, K.M. Kennedy, C.-E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, D.D. Sampson, Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography. Biomed. Opt. Express 3, 1381–1398 (2012)

    Article  Google Scholar 

  106. M. Doyley, Model-based elastography: a survey of approaches to the inverse elasticity problem. Phys. Med. Biol. 57, R35 (2012)

    Article  ADS  Google Scholar 

  107. A.H. Chau, R.C. Chan, M. Shishkov, B. MacNeill, N. Iftimia, G.J. Tearney, R.D. Kamm, B.E. Bouma, M.R. Kaazempur-Mofrad, Mechanical analysis of atherosclerotic plaques based on optical coherence tomography. Ann. Biomed. Eng. 32, 1494–1503 (2004)

    Article  Google Scholar 

  108. A.S. Khalil, R.C. Chan, A.H. Chau, B.E. Bouma, M.R.K. Mofrad, Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue. Ann. Biomed. Eng. 33, 1631–1639 (2005)

    Article  Google Scholar 

  109. L.M. Peterson, M.W. Jenkins, S. Gu, L. Barwick, M. Watanabe, A.M. Rollins, 4D shear stress maps of the developing heart using Doppler optical coherence tomography. Biomed. Opt. Express 3, 3022–3032 (2012)

    Article  Google Scholar 

  110. G. van Soest, F. Mastik, N. de Jong, A.F.W. van der Steen, Robust intravascular optical coherence elastography by line correlations. Phys. Med. Biol. 52, 2445 (2007)

    Article  Google Scholar 

  111. M.R. Ford, J.W.J. Dupps, A.M. Rollins, A.S. Roy, Z. Hu, Method for optical coherence elastography of the cornea. J. Biomed. Opt. 16, 016005–016005 (2011)

    Article  ADS  Google Scholar 

  112. A. Srivastava, Y. Verma, K.D. Rao, P.K. Gupta, Determination of elastic properties of resected human breast tissue samples using optical coherence tomographic elastography. Strain 47, 75–87 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

BFK, KMK, and DDS acknowledge funding from the Australian Research Council, the National Health and Medical Research Council, the Raine Medical Research Foundation, and the University of Western Australia. They thank their colleagues and coworkers Prof Mark Bush, Mr Lixin Chin, Dr Chris Ford, and Dr Robert McLaughlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendan F. Kennedy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Kennedy, B.F., Kennedy, K.M., Oldenburg, A.L., Adie, S.G., Boppart, S.A., Sampson, D.D. (2015). Optical Coherence Elastography. In: Drexler, W., Fujimoto, J. (eds) Optical Coherence Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-06419-2_33

Download citation

Publish with us

Policies and ethics