Skip to main content

Mode of Action of Aspirin as a Chemopreventive Agent

  • Chapter
  • First Online:
Book cover Prospects for Chemoprevention of Colorectal Neoplasia

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 191))

Abstract

Aspirin taken for several years at doses of at least 75 mg daily reduced long-term incidence and mortality due to colorectal cancer. The finding of aspirin benefit at low-doses given once daily, used for cardioprevention, locates the antiplatelet effect of aspirin at the center of its antitumor efficacy. In fact, at low-doses, aspirin acts mainly by an irreversible inactivation of platelet cyclooxygenase (COX)-1 in the presystemic circulation, which translates into a long-lasting inhibition of platelet function. Given the short half-life of aspirin in the human circulation(approximately 20 min) and the capacity of nucleated cells to resynthesize the acetylated COX-isozyme(s), it seems unlikely that a nucleated cell could be the target of aspirin chemoprevention. These findings convincingly suggest that colorectal cancer and atherothrombosis may share a common mechanism of disease, i.e. platelet activation in response to epithelial(in tumorigenesis) and endothelial(in tumorigenesis and atherothrombosis) injury. Activated platelets may also enhance the metastatic potential of cancer cells (through a direct interaction and/or the release of soluble mediators or exosomes) at least in part by inducing the overexpression of COX-2. COX-independent mechanisms of aspirin, such as the inhibition of NF-kB signaling and Wnt/β-catenin signaling and the acetylation of extra-COX proteins, have been suggested to play a role in its chemopreventive effects. However, their relevance remains to be demonstrated in vivo at clinical doses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

15R-HETE:

15R-hydroxyeicosapentaenoic acid

5-LOX:

5-lipoxygenase

ADP:

Adenosine diphosphate

apaf-1:

Apoptotic protease activating factor-1

AA:

Arachidonic acid

CRC:

Colorectal cancer

COX:

Cyclooxygenase

EGFR:

Epidermal growth factor receptor

ERK:

Extracellular signal-regulated kinase

FAP:

Familial adenomatous polyposis

FGF:

Fibroblast growth factor

IGF:

Insulin-like growth factor

IL:

Interleukin

LPS:

Bacterial endotoxin

MPs:

Microparticles

mPGES-1:

Microsomal PGE2 synthase-1

NK:

Natural killer

NSAID:

Nonsteroidal anti-inflammatory drug

NF-kB:

Nuclear factor kappa B

PDGF:

Platelet-derived growth factor

PDGF:

Platelet-derived growth factor

PGI2 :

Prostacyclin

PG:

Prostaglandin

PKC:

Protein kinase C

Ser:

Serine

S1P:

Sphingosine-1-phosphate

Lef:

T-cell factor (Tcf)/lymphoid enhancer factor

TX:

Thromboxane

TIMP:

Tissue inhibitor of metalloproteinases

TCIPA:

Tumor cell-induced platelet aggregation

TXAS:

TXA2 synthase

VEGF:

Vascular endothelial growth factor

References

  • Alfonso LF, Srivenugopal KS, Arumugam TV et al (2009a) Aspirin inhibits camptothecin-induced p21CI P1 levels and potentiates apoptosis in human breast cancer cells. Int J Oncol 34:597–608

    CAS  PubMed  Google Scholar 

  • Alfonso LF, Srivenugopal KS, Bhat GJ (2009b) Does aspirin acetylate multiple cellular proteins? Mol Med Report 2:533–537

    CAS  PubMed  Google Scholar 

  • Archer SY, Hodint RA (1999) Histone acetylation and cancer. Curr Opin Genet Dev 9:171–174

    CAS  PubMed  Google Scholar 

  • Baigent C and Antithrombotic Trialists’ Collaboration (2002) Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high-risk patients. BMJ 324:71–86

    Google Scholar 

  • Baron JA, Cole BF, Sandler RS et al (2003) A randomized trial of aspirin to prevent colorectal adenomas. N Engl J Med 348:891–899

    CAS  PubMed  Google Scholar 

  • Bastida E, Escolar G, Ordinas A et al (1986) Morphometric evaluation of thrombogenesis by microvesicles from human tumor cell lines with thrombin-dependent (U87MG) and adenosine diphosphate-dependent (SKNMC) platelet-activating mechanisms. J Lab Clin Med 108:622–627

    CAS  PubMed  Google Scholar 

  • Benamouzig R, Deyra J, Martin A et al (2003) Daily soluble aspirin and prevention of colorectal adenoma recurrence: one-year results of the APACC trial. Gastroenterology 125:328–336

    CAS  PubMed  Google Scholar 

  • Bertagnolli MM, Eagle CJ, Zauber AG et al (2006) Celecoxib for the prevention of sporadic colorectal adenomas. N Engl J Med 355:873–884

    CAS  PubMed  Google Scholar 

  • Bos CL, Kodach LL, van den Brink GR et al (2006) Effect of aspirin on the Wnt/beta-catenin pathway is mediated via protein phosphatase 2A. Oncogene 25:6447–6456

    CAS  PubMed  Google Scholar 

  • Bours V, Bentires-Alj M, Hellin AC et al (2000) Nuclear factor-kappa B, cancer, and apoptosis. Biochem Pharmacol 60:1085–1089

    CAS  PubMed  Google Scholar 

  • Cao Y, Prescott SM (2002) Many actions of cyclooxygenase-2 in cellular dynamics and in cancer. J Cell Physiol 90:279–286

    Google Scholar 

  • Capone ML, Tacconelli S, Di Francesco L et al (2007) Pharmacodynamic of cyclooxygenase inhibitors in humans. Prostaglandins Other Lipid Mediat 82:85–94

    CAS  PubMed  Google Scholar 

  • Capone ML, Tacconelli S, Sciulli MG et al (2004) Clinical pharmacology of platelet, monocyte, and vascular cyclooxygenase inhibition by naproxen and low-dose aspirin in healthy subjects. Circulation 109:1468–1471

    CAS  PubMed  Google Scholar 

  • Cervi D, Yip TT, Bhattacharya N et al (2008) Platelet-associated PF-4 as a biomarker of early tumor growth. Blood 111:1201–1207

    CAS  PubMed  Google Scholar 

  • Cha YI, DuBois RN (2007) NSAIDs and cancer prevention: targets downstream of COX-2. Annu Rev Med 58:239–252

    CAS  PubMed  Google Scholar 

  • Charman WN, Charman SA, Monkhouse DC et al (1993) Biopharmaceutical characterisation of a low-dose (75 mg) controlled-release aspirin formulation. Br J Clin Pharmac 36:470–473

    CAS  Google Scholar 

  • Chen Z, Hagler J, Palombella VJ et al (1995) Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes Dev 9:1586–1597

    CAS  PubMed  Google Scholar 

  • Chulada PC, Thompson MB, Mahler JF et al (2000) Genetic disruption of Ptgs-1, as well as Ptgs-2, reduces intestinal tumorigenesis in Min mice. Cancer Res 60:4705–4708

    CAS  PubMed  Google Scholar 

  • Cipollone F, Patrignani P, Greco A et al (1997) Differential suppression of thromboxane biosynthesis by indobufen and aspirin in patients with unstable angina. Circulation 96:1109–1116

    CAS  PubMed  Google Scholar 

  • Clarke RJ, Mayo G, Price P et al (1991) Suppression of thromboxane A2 but not of systemic prostacyclin by controlled-release aspirin. N Engl J Med 325:1137–1141

    CAS  PubMed  Google Scholar 

  • Collier JC, Flower RJ (1971) Effect of Aspirin on human seminal prostaglandins. Lancet ii:852–853

    Google Scholar 

  • Creagh EM, Conroy H, Martin SJ (2003) Caspase-activation pathways in apoptosis and immunity. Immunol Rev 193:10–21

    CAS  PubMed  Google Scholar 

  • Cuzick J, Otto F, Baron JA et al (2009) Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement. Lancet Oncol 10:501–507

    CAS  PubMed  Google Scholar 

  • Davì G, Patrono C (2007) Platelet activation and atherothrombosis. N Engl J Med 357:2482–2494

    PubMed  Google Scholar 

  • Delattre O, Olschwang S, Law DJ et al (1989) Multiple genetic alterations in distal and proximal colorectal cancer. Lancet 2:353–356

    CAS  PubMed  Google Scholar 

  • Di Francesco L, Totani L, Dovizio M et al (2009) Induction of prostacyclin by steady laminar shear stress suppresses tumor necrosis factor-alpha biosynthesis via heme oxygenase-1 in human endothelial cells. Circ Res 104:506–513

    PubMed  Google Scholar 

  • Dixon DA, Tolley ND, Bemis-Standoli K et al (2006) Expression of COX-2 in platelet-monocyte interactions occurs via combinatorial regulation involving adhesion and cytokine signaling. J Clin Invest 116:2727–2738

    CAS  PubMed  Google Scholar 

  • Dixon DA, Tolley ND, King PH et al (2001) Altered expression of the mRNA stability factor HuR promotes cyclooxygenase-2 expression in colon cancer cells. J Clin Invest 2108:1657–1665

    Google Scholar 

  • Donnini S, Finetti F, Solito R et al (2007) EP2 prostanoid receptor promotes squamous cell carcinoma growth through epidermal growth factor receptor transactivation and iNOS and ERK1/2 pathways. FASEB J 21:2418–2430

    CAS  PubMed  Google Scholar 

  • Dovizio M, Tacconelli S, Ricciotti E et al (2012) Effects of celecoxib on prostanoid biosynthesis and circulating angiogenesis proteins in familial adenomatous polyposis. J Pharmacol Exp Ther 341:242–250

    CAS  PubMed  Google Scholar 

  • Dreser H (1899) Pharmakologisches über aspirin (acetylsalicylsäure). Pfluger’s Arch 76:306–318

    CAS  Google Scholar 

  • Evangelista V, Manarini S, Di Santo A et al (2006) De novo synthesis of cyclooxygenase-1 counteracts the suppression of platelet thromboxane biosynthesis by aspirin. Circ Res 98:593–595

    CAS  PubMed  Google Scholar 

  • Ferreira SH, Moncada S, Vane JR (1971) Indomethacin and Aspirin abolish prostaglandin release from spleen. Nature 231:237–239

    CAS  Google Scholar 

  • Fierro IM, Kutok JL, Serhan CN (2002) Novel lipid mediator regulators of endothelial cell proliferation and migration: aspirin-triggered-15R-lipoxin A(4) and lipoxin A(4). J Pharmacol Exp Ther 300:385–392

    CAS  PubMed  Google Scholar 

  • FitzGerald GA (2003) COX-2 and beyond: Approaches to prostaglandin inhibition in human disease. Nat Rev Drug Discov 2:879–890

    CAS  PubMed  Google Scholar 

  • García Rodríguez LA, Hernández-Díaz S, de Abajo FJ (2001) Association between aspirin and upper gastrointestinal complications: systematic review of epidemiologic studies. Br J Clin Pharmacol 52:563–571

    PubMed  Google Scholar 

  • García Rodríguez LA, Lin KJ, Hernández-Díaz S et al (2011) Risk of upper gastrointestinal bleeding with low-dose acetylsalicylic acid alone and in combination with clopidogrel and other medications. Circulation 2011(123):1108–1115

    Google Scholar 

  • Gay LJ, Felding-Habermann B (2011) Contribution of platelets to tumour metastasis. Nat Rev Cancer 11:123–134

    CAS  PubMed  Google Scholar 

  • Geest CR, Coffer PJ (2009) MAPK signaling pathways in the regulation of hematopoiesis. J Leukoc Biol 86:237–250

    CAS  PubMed  Google Scholar 

  • Gilroy DW (2005) The role of aspirin-triggered lipoxins in the mechanism of action of aspirin. Prostaglandins Leukot Essent Fatty Acids 73:203–210

    CAS  PubMed  Google Scholar 

  • Grilli M, Pizzi M, Memo M et al (1996) Neuroprotection by aspirin and sodium salicylate through blockade of NF-kB activation. Science 274:1383–1385

    CAS  PubMed  Google Scholar 

  • Grosser T, Fries S, FitzGerald GA (2006) Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J Clin Invest 116:4–15

    CAS  PubMed  Google Scholar 

  • Gu Q, Wang JD, Xia HH et al (2005) Activation of the caspase-8/Bid and Bax pathways in aspirin-induced apoptosis in gastric cancer. Carcinogenesis 26:541–546

    CAS  PubMed  Google Scholar 

  • Hanif R, Pittas A, Feng Y et al (1996) Effects of nonsteroidal anti-inflammatory drugs on proliferation and on induction of apoptosis in colon cancer cells by a prostaglandin-independent pathway. Biochem Pharmacol 52:237–245

    CAS  PubMed  Google Scholar 

  • Harper KA, Tyson-Capper AJ (2008) Complexity of COX-2 gene regulation. Biochem Soc Trans 36:543–545

    CAS  PubMed  Google Scholar 

  • Hemler M, Lands WEM, Smith WL (1976) Purification of the cyclooxygenase that forms prostaglandins: demonstration of two forms of iron in the holoenzyme. J Biol Chem 251:5575–5579

    CAS  PubMed  Google Scholar 

  • Honn K (1983) Inhibition of tumor cell metastasis by modulation of the vascular prostacyclin/thromboxane A2 system. Clin Exp Metastasis 1:103–114

    CAS  PubMed  Google Scholar 

  • Iacopetta B (2002) Are there two sides to colorectal cancer? Int J Cancer 101:403–408

    CAS  PubMed  Google Scholar 

  • Italiano JE Jr, Richardson JL, Patel-Hett S et al (2008) Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 111:1227–1233

    CAS  PubMed  Google Scholar 

  • Jana NR (2008) NSAIDs and apoptosis. Cell Mol Life Sci 65:1295–1301

    CAS  PubMed  Google Scholar 

  • Janowska-Wieczorek A, Wysoczynski M, Kijowski J et al (2005) Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 113:752–760

    CAS  PubMed  Google Scholar 

  • Jurasz P, Alonso-Escolano D, Radomski MW (2004) Platelet–cancer interactions: mechanisms and pharmacology of tumour cell-induced platelet aggregation. Br J Pharmacol 143:819–826

    CAS  PubMed  Google Scholar 

  • Kang YJ, Mbonye UR, DeLong CJ et al (2007) Regulation of intracellular cyclooxygenase levels by gene transcription and protein degradation. Prog Lipid Res 46:108–125

    CAS  PubMed  Google Scholar 

  • Kopp E, Ghosh S (1994) Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 265:956–959

    CAS  PubMed  Google Scholar 

  • Kujubu DA, Fletcher BS, Varnum BC (1991) TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue. J Biol Chem 266:12866–12872

    CAS  PubMed  Google Scholar 

  • Kulmacz RJ, Lands WE (1985) Stoichiometry and kinetics of the interaction of prostaglandin H synthase with anti-inflammatory agents. J Biol Chem 260:12572–12578

    CAS  PubMed  Google Scholar 

  • Kurumbail RG, Stevens AM, Gierse JK et al (1996) Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 384:644–648

    CAS  PubMed  Google Scholar 

  • Lecomte M, Laneuville O, Ji C et al (1994) Acetylation of human prostaglandin endoperoxide synthase-2 (cyclooxygenase-2) by aspirin. J Biol Chem 269:13207–13215

    CAS  PubMed  Google Scholar 

  • Loll PJ, Picot D, Garavito RM (1995) The structural basis of aspirin activity inferred from the crystal structure of inactivated prostaglandin H2 synthase. Nat Struct Biol 2:637–643

    CAS  PubMed  Google Scholar 

  • Mann B, Gelos M, Siedow A et al (1999) Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc Natl Acad Sci U S A 96:1603–1608

    CAS  PubMed  Google Scholar 

  • Mause SF, Weber C (2010) Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res 107:1047–1057

    CAS  PubMed  Google Scholar 

  • Meade TW, Framework The Medical Research Council’s General Practice Research (1998) Thrombosis prevention trial: randomised trial of low-intensity oral anticoagulation with warfarin and low-dose aspirin in the primary prevention of ischaemic heart disease in men at increased risk. Lancet 351:233–241

    Google Scholar 

  • Menter DG, Onoda JM, Moilanen D et al (1987) Inhibition by prostacyclin of the tumor cell-induced platelet release reaction and platelet aggregation. J Natl Cancer Inst 78:961–969

    CAS  PubMed  Google Scholar 

  • Miller JR, Hocking AM, Brown JD et al (1999) Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca2+ pathways. Oncogene 18:7860–7872

    CAS  PubMed  Google Scholar 

  • Minuz P, Fumagalli L, Gaino S et al (2006) Rapid stimulation of tyrosine phosphorylation signals downstream of Gprotein- coupled receptors for thromboxane A2 in human platelets. Biochem J. 400:127–134

    CAS  PubMed  Google Scholar 

  • Needleman P, Moncada S, Bunting S et al (1976) Identification of an enzyme in platelet microsomes which generates thromboxane A2 from prostaglandin endoperoxides. Nature 261:558–560

    CAS  PubMed  Google Scholar 

  • Nieswandt B, Hafner M, Echtenacher B et al (1999) Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res 59:1295–1300

    CAS  PubMed  Google Scholar 

  • Okajima F (2002) Plasma lipoproteins behave as carriers of extracellular sphingosine 1-phosphate: is this an atherogenic mediator or an anti-atherogenic mediator? Biochim Biophys Acta 1582:132–137

    CAS  PubMed  Google Scholar 

  • Pacienza N, Pozner RG, Bianco GA et al (2008) The immunoregulatory glycan-binding protein galectin-1 triggers human platelet activation. FASEB J 22:1113–1123

    CAS  PubMed  Google Scholar 

  • Padua D, Zhang XH, Wang Q et al (2008) TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133:66–77

    CAS  PubMed  Google Scholar 

  • Paganini-Hill A, Chao A, Ross RK et al (1989) Aspirin use and chronic diseases: a cohort study of the elderly. BMJ 299:1247–1250

    CAS  PubMed  Google Scholar 

  • Pan MR, Chang HC, Hung WC (2008) Non-steroidal anti-inflammatory drugs suppress the ERK signaling pathway via block of Ras/c-Raf interaction and activation of MAP kinase phosphatases. Cell Signal 20:1134–1141

    CAS  PubMed  Google Scholar 

  • Patrignani P, Filabozzi P, Patrono C (1982) Selective cumulative inhibition of platelet thromboxane production by low-dose aspirin in healthy subjects. J Clin Invest 69:1366–1372

    CAS  PubMed  Google Scholar 

  • Patrignani P, Panara MR, Greco A et al (1994) Biochemical and pharmacological characterization of the cyclooxygenase activity of human blood prostaglandin endoperoxide synthases. J Pharmacol Exp Ther 271:1705–1712

    CAS  PubMed  Google Scholar 

  • Patrono C, Baigent C, Hirsh J et al (2008) Antiplatelet drugs: American college of chest physicians evidence-based clinical practice guidelines. Chest 133:199S–233S 8th edn

    CAS  PubMed  Google Scholar 

  • Patrono C, Ciabattoni G, Patrignani P et al (1985) Clinical pharmacology of platelet cyclooxygenase inhibition. Circulation 72:1177–1184

    CAS  PubMed  Google Scholar 

  • Patrono C, Ciabattoni G, Pinca E et al (1980) Low dose aspirin and inhibition of thromboxane B2 production in healthy subjects. Thromb Res 17:317–327

    CAS  PubMed  Google Scholar 

  • Patrono C, García Rodríguez LA, Landolfi R et al (2005) Low-dose aspirin for the prevention of atherothrombosis. N Engl J Med 353:2373–2383

    CAS  PubMed  Google Scholar 

  • Patrono C, Patrignani P, García Rodríguez LA (2001) Cyclooxygenase-selective inhibition of prostanoid formation: transducing biochemical selectivity into clinical read-outs. J Clin Invest 108:7–13

    CAS  PubMed  Google Scholar 

  • Pedersen AK, FitzGerald GA (1984) Dose-related kinetics of aspirin: presystemic acetylation of platelet cyclo-oxygenase. N Engl J Med 311:1206–1211

    CAS  PubMed  Google Scholar 

  • Picot D, Loll PJ, Garavito RM (1994) The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. Nature 367:243–249

    CAS  PubMed  Google Scholar 

  • Pradono P, Tazawa R, Maemondo M et al (2002) Gene transfer of thromboxane A(2) synthase and prostaglandin I(2) synthase antithetically altered tumor angiogenesis and tumor growth. Cancer Res 62:63–66

    CAS  PubMed  Google Scholar 

  • Prescott SM (2000) Is cyclooxygenase-2 the alpha and the omega in cancer? J Clin Invest 105:1511–1513

    CAS  PubMed  Google Scholar 

  • Pyne NJ (2010) Pyne S (2010) Sphingosine 1-phosphate and cancer. Nat Rev Cancer 10:489–503

    CAS  PubMed  Google Scholar 

  • Rimon G, Sidhu RS, Lauver DA et al (2010) Coxibs interfere with the action of aspirin by binding tightly to one monomer of cyclooxygenase-1. Proc Natl Acad Sci USA 107:28–33

    CAS  PubMed  Google Scholar 

  • Romano M (2006) Lipid mediators: lipoxin and aspirin-triggered 15-epi-lipoxins. Inflamm Allergy Drug Targets 5:81–90

    CAS  PubMed  Google Scholar 

  • Romano M (2010) Lipoxin and aspirin-triggered lipoxins. Sci World J 10:1048–1064

    CAS  Google Scholar 

  • Roth GJ, Majerus PW (1975) The mechanism of the effect of aspirin on human platelets: 1 acetylation of a particulate fraction protein. J Clin Invest 56:624–632

    CAS  PubMed  Google Scholar 

  • Roth GJ, Stanford N, Majerus PW (1975) Acetylation of prostaglandin synthase by aspirin. Proc Natl Acad Sci U S A 72:3073–3076

    CAS  PubMed  Google Scholar 

  • Rothwell PM, Fowkes FG, Belch JF et al (2011) Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet 377:31–41

    CAS  PubMed  Google Scholar 

  • Rothwell PM, Wilson M, Elwin CE et al (2010) Long-term effect of aspirin on colorectal cancer incidence and mortality: 20 year follow-up of five randomised trials. Lancet 376:1741–1750

    CAS  PubMed  Google Scholar 

  • Rumble RH, Brooks PM, Roberts MS (1980) Metabolism of salicylate during chronic aspirin therapy. Br J Clin Pharmac 9:41–45

    CAS  Google Scholar 

  • Sandler RS, Halabi S, Baron JA et al (2003) A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. N Engl J Med 348:883–890

    CAS  PubMed  Google Scholar 

  • Sciulli MG, Filabozzi P, Tacconelli S et al (2005) Platelet activation in patients with colorectal cancer. Prostaglandins Leukot Essent Fatty Acids 72:79–83

    CAS  PubMed  Google Scholar 

  • Serhan CN (2005) Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins Leukot Essent Fatty Acids 73:141–162

    CAS  PubMed  Google Scholar 

  • Seymour RA, Rawlins MD (1982) Efficacy and pharmacokinetics of aspirin in post-operative dental pain. J. Clin. Pharmac. 13:807–810

    CAS  Google Scholar 

  • Sharma NP, Dong L, Yuan C et al (2010) Asymmetric acetylation of the cyclooxygenase-2 homodimer by aspirin and its effects on the oxygenation of arachidonic, eicosapentaenoic, and docosahexaenoic acids. Mol Pharmacol 77:979–986

    CAS  PubMed  Google Scholar 

  • Sharma S, Yang SC, Zhu L et al (2005) Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Res 65:5211–5220

    CAS  PubMed  Google Scholar 

  • Sheehan KM, Sheahan K, O’Donoghue DP et al (1999) The relationship between cyclooxygenase-2 expression and colorectal cancer. JAMA 282:1254–1257

    CAS  PubMed  Google Scholar 

  • Sidhu RS, Lee JY, Yuan C et al (2010) Comparison of cyclooxygenase-1 crystal structures: cross-talk between monomers comprising cyclooxygenase-1 homodimers. Biochemistry 49:7069–7079

    CAS  PubMed  Google Scholar 

  • Smith JB, Willis AL (1971) Aspirin selectively inhibits prostaglandin production in human platelets. Nature 231:235–237

    CAS  Google Scholar 

  • Smyth EM, Grosser T, Wang M et al (2009) Prostanoids in health and disease. J Lipid Res 50:S423–S428

    PubMed  Google Scholar 

  • Smyth MJH, Dawkins PD (1971) Salicylates and enzyme. J Pharm Pharmacol 23:729–744

    Google Scholar 

  • Stark LA, Din FV, Zwacka RM et al (2001) Aspirin-induced activation of the NF-kappaB signaling pathway: a novel mechanism for aspirin-mediated apoptosis in colon cancer cells. FASEB J 15:1273–1275

    CAS  PubMed  Google Scholar 

  • Steinbach G, Lynch PM, Phillips RK et al (2000) The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 342:1946–1952

    CAS  PubMed  Google Scholar 

  • Stone E (1763) An account of the success of the bark of the willow tree in the cure of agues. Philos Trans R Soc Lond. 53:195–200

    Google Scholar 

  • Tani M, Sano T, Ito M et al (2005) Mechanisms of sphingosine and sphingosine 1-phosphate generation in human platelets. J Lipid Res 46:2458–2467

    CAS  PubMed  Google Scholar 

  • Thun MJ, Henley SJ, Patrono C (2002) Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic. Pharmacologic, Clin Issues J Natl Cancer Inst 94:252–266

    CAS  Google Scholar 

  • Topper JN, Cai J, Falb D et al (1996) Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. PNAS 93:10417–10422

    CAS  PubMed  Google Scholar 

  • Ulrych T, Böhm A, Polzin   et al (2011) Release of sphingosine-1-phosphate from human platelets is dependent on thromboxane formation. J Thromb Haemost 9:790–798

    CAS  PubMed  Google Scholar 

  • Vane JR (1971) Inhibition of prostaglandin synthesis as a mechanism of action for Aspirin-like drugs. Nat New Biol 231:232–235

    CAS  PubMed  Google Scholar 

  • Vane JR, Botting RM (2003) The mechanism of action of aspirin. Thromb Res 110:255–258

    CAS  PubMed  Google Scholar 

  • Wang D, Dubois RN (2010) Eicosanoids and cancer. Nat Rev Cancer 10:181–193

    CAS  PubMed  Google Scholar 

  • Weiss HJ, Aledort LM (1967) Impaired platelet-connective-tissue reaction in man after aspirin ingestion. Lancet 2:495–497

    CAS  PubMed  Google Scholar 

  • Xie W, Chipman JG, Robertson DL et al (1991) Expression of a mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proc Natl Acad Sci U S A 88:2692–2696

    CAS  PubMed  Google Scholar 

  • Yin MJ, Yamamoto Y, Gaynor RB (1998) The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature 396:77–80

    CAS  PubMed  Google Scholar 

  • Yuan C, Rieke CJ, Rimon G et al (2006) Partnering between monomers of cyclooxygenase-2 homodimers. Proc Natl Acad Sci U S A. 103:6142–6147

    CAS  PubMed  Google Scholar 

  • Yuan C, Sidhu RS, Kuklev DV et al (2009) Cyclooxygenase Allosterism, Fatty Acid-mediated Cross-talk between Monomers of Cyclooxygenase Homodimers. J Biol Chem 284:10046–10055

    CAS  PubMed  Google Scholar 

  • Zimmermann KC, Waterhouse NJ, Goldstein JC et al (2000) Aspirin induces apoptosis through release of cytochrome c from mitochondria. Neoplasia 2:505–513

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by research funding from the Associazione Italiana per la Ricerca sul Cancro (AIRC) to Paola Patrignani. We would like to thank, for fruitful discussions and suggestions, Dr Carlo Patrono (Catholic University, Rome, Italy), Luis A Garcia Rodriguez (CEIFE, Madrid, Spain) and Angel Lanas (University of Zaragoza, Spain). We apologize to our colleagues for not being able to reference all primary work due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Patrignani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dovizio, M., Bruno, A., Tacconelli, S., Patrignani, P. (2013). Mode of Action of Aspirin as a Chemopreventive Agent. In: Chan, A., Detering, E. (eds) Prospects for Chemoprevention of Colorectal Neoplasia. Recent Results in Cancer Research, vol 191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30331-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30331-9_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30330-2

  • Online ISBN: 978-3-642-30331-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics