Skip to main content
Log in

Metabolic changes following oral exposure to tetrachloroethylene in subtoxic concentrations

  • Original Investigations
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Mice were exposed to very small quantities of Per (0.05 and 0.1 mg Per/kg body weight per day) administered orally for 7 weeks. It was shown that Per was transported through the body by two separate mechanisms and was finally stored in the adipose tissue. On the one hand, Per reaches the interior of the membranes of red blood cells, leading to changes in the entire erythropoietic system. The membranes of the red blood cells are destroyed prematurely and its fragments are increasingly phagocytized in the spleen. The result is a high level of Per stored in the spleen. The increase in haemolysis was also demonstrated by showing an increase in LDH activity and the accumulation of haemosiderin in the macrophages in the spleen. Only 8 weeks following discontinuation of Per, these changes were reversible. On the other hand, Per is also transported with the chylomicrons. Since the lipoprotein lipase is inhibited by Per, these molecules are broken down to a lesser degree. The concentration of triglycerides (the major component of the chylomicrons) in the serum was elevated, and the chylomicrons were increasingly integrated into the adipose tissue, Per also reached this depot fat. It took as long as 16 weeks after discontinuation of Per until these changes were fully reversed and the experimental mice no longer differed from those in the control group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Per:

Perchloroethylene (1,1,2,2-tetrachloroethylene)

SGPT:

serum glutamate-pyruvate-transaminase

TCA:

trichloroacetic acid

TCE:

trichloroethanol

NAD:

nicotinamide adenine dinucleotide

PBS:

phosphate buffered saline

LDH:

lactate dehydrogenase

LDL:

low density lipoproteins

VLDL:

very low density lipoproteins

References

  • Andersen ME (1981) Saturable metabolism and its relationship to toxicity. CRC Crit Rev Toxicol 9: 105–149

    Google Scholar 

  • Andersen ME, Gargas ML, Jones RA, Jenkins LJ (1980) Determination of the kinetic constants for metabolism of inhaled toxicans in vivo using gas uptake measurements. Toxicol Appl Pharmacol 54: 100–116

    PubMed  Google Scholar 

  • Bauer U (1981) Belastungen des Menschen durch Schadstoffe der Umwelt — Untersuchungen über leicht flüchtige organische Halogenverbindungen in Wasser, Luft, Lebensmitteln und im menschlichen Gewebe. I-IV. Zbl. Bak Hyg, I. Abt Orig B 174: 15–583

    Google Scholar 

  • Bolt HM, Buchter A, Wolowski L, Gil DL, Bolt W (1977) Incubation of14C-trichloroethylene vapor with rat liver microsomes: Uptake of radioactivity and covalent protein binding of metabolites. Int Arch Occup Environ Health 39: 103–111

    PubMed  Google Scholar 

  • Bolt HM, Filser JG (1977) Irreversible binding of chlorinated ethylenes to macromolecules. Environ Health Perspect 21: 107–112

    PubMed  Google Scholar 

  • Brown BR, Vandam LDA (1976) Review of current advances in metabolism of inhalation anesthetics. Ann NY Acad Sci 247: 235–243

    Google Scholar 

  • Browning E (1965) Trichloroethylene and terachloroethylene. In: Toxicity and metabolism of industrial solvents. Elsevier, Amsterdam, London

    Google Scholar 

  • Buben JA, O'Flaherty E (1985) Delineation of the role of metabolism in the hepatotoxicity of trichloroethylene and perchloroethylene: A dose-effect study. Toxicol Appl Pharmacol 54: 105–122

    Google Scholar 

  • Daniel JW (1963) The metabolism of36C1-labelled trichloroethylene and terachloroethylene in the rat. Biochem Pharmacol 12: 795–802

    PubMed  Google Scholar 

  • Gehring P (1968) Hepatotoxic potency of various chlorinated hydrocarbons relative to their narcotic and lethal potencies in mice. Toxicol Appl Pharmacol 13: 287–298

    PubMed  Google Scholar 

  • Gether J, Lunde G (1975) Determination of tetrachloroethylene residues in defatted meals. Lebensm Wiss u Technol 8: 183–184

    Google Scholar 

  • Giger W, Molnar-Kubica E (1978) Tetrachloroethylene in contaminated ground and drinking waters. Bull Environ Contam Toxicol 19: 475–480

    PubMed  Google Scholar 

  • Gray E (1976) Assessment of hepatotoxic potential. Environ Health Perspect 15: 47–54

    PubMed  Google Scholar 

  • Green T, Prout MS (1985) Species differences in response to trichloroethylene. II. Biotransformation in rats and mice. Toxicol Appl Pharmacol 79: 401–411

    PubMed  Google Scholar 

  • Hartmetz G, Borneff J, Borneff M (1985) Vorkommen leichtflüchtiger Chlorkohlenwasserstoffe in Trinkwässern von Rheinland-Pfalz. Forum Städte-Hygiene 36: 316–319

    Google Scholar 

  • Henschler D, Bonse G (1977) Metabolic activation of chlorinated ethylenes: Dependence of mutagenic effect on electrophilic reactivity of the metabolically formed epoxides. Arch Toxicol 39: 7–12

    PubMed  Google Scholar 

  • IARC (1979) Monographs on the evaluation of the carcinogenic risk of chemical to humans. IARC Lyon 20: 491–514

    Google Scholar 

  • Ikeda M, Ohtsuji H, Imamura T, Komoike Y (1972) Urinary excretion of total trichloro-compounds, trichloroethanol, and trichloroacetic acid as a measure of exposure to trichloroethylene and tetrachloroethylene. Br J Ind Med 29: 328–333

    PubMed  Google Scholar 

  • Klein G, Gromadies B, Bürger A, Scheunert E, Rittner G (1981) Langzeitwirkungen von Schwefelkohlenwasserstoff und Halogen-kohlenwasserstoffen, besonders Perchlorethylen, auf den Lipidstoffwechsel. 7 Ges Hyg 27: 48–51

    Google Scholar 

  • Kostner GM (1983) Apolipoproteins and lipoproteins of human plasma: Significance for health and diseases. Adv Lipid Res 20: 1–44

    PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr L, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275

    PubMed  Google Scholar 

  • Marth E, Stünzner D, Binder H, Möse JR (1985a) Tetrachlorethylen — Eine Studie über die Wirkung niedriger Konzentrationen von 1,1,2,2-Tetrachlorethylen (Perchlorethylen) am Organismus der Maus. I. Laborchemische Untersuchungen. Zbl Bakt Hyg, I. Abt Orig B 181: 525–540

    Google Scholar 

  • Marth E, Stünzner D, Binder H, Möse JR (1985b) Tetrachlorethylen — Eine Studie über die Wirkung niedriger Konzentrationen von 1,1,2,2-Tetrachlorethylen (Perchlorethylen) am Organismus der Maus. II. Rückstandsuntersuchungen von Tetrachlorethylen in verschiedenen Organen und Nachweis von histologischen Veränderungen der untersuchten Organe. Zbl Bak Hyg, I. Abt Orig B 181: 541–547

    Google Scholar 

  • Marth E, Stünzner D, Binder H, Möse JR (1986) Perchlorethylen und der Lipoproteinstoffwechsel der Maus. Hyg Med 11: 244–246

    Google Scholar 

  • Möse JR, Wilfinger G, Zeichen R (1985) Trinkwasserverunreinigung durch Perchlorethylen. Zbl Bakt Hyg, I. Abt Orig B 181: 111–120

    Google Scholar 

  • Munro IC (1977) Consideration in chronic toxicity testing: The chemical, the dose, the design. J Environ Pathol Toxicol 1: 183–197

    PubMed  Google Scholar 

  • National Cancer Institute (1977) Bioassay of tetrachloroethylene for possible carcinogenesis. DHEW Publ No (NIH) 77-813

  • Pegg DG, Zempel A, Braun WH, Watanabe PG (1979) Disposition of tetrachloro (14C)ethylene following oral and inhalation exposure in rats. Toxicol Appl Pharmacol 51: 465–474

    PubMed  Google Scholar 

  • Prout MS, Provan WM, Green T (1985) Species differences in response to trichloroethylene. I. Pharmacokinetics in rats and mice. Toxicol Appl Pharmacol 79: 389–400

    PubMed  Google Scholar 

  • Ratnoff WD, Gress RE (1980) The familial occurence of polycythemia vera: Report of a father and son, with consideration of the possible etiologic role of exposure to organic solvents, including tetrachloroethylene. Blood 56: 233–236

    PubMed  Google Scholar 

  • Reddy JK, Azarnoff DL, Hignite CE (1980) Hypolipidemic hepatic peroxisome proliferators form a novel class of chemical carcinogens. Nature (London) 283: 397–398

    Google Scholar 

  • Reichert D (1983) Biological actions and interactions of tetrachloroethylene. Mutat Res 123: 411–429

    PubMed  Google Scholar 

  • Sokal R, Rohlf J (1969) Biometrics. Freeman, San Francisco, pp 235–246

    Google Scholar 

  • Steward RD, Dodd HC (1964) Absorption of carbon tetrachloride, trichloroethylene, tetrachlorethylene, methylene chloride and 1,1,1 trichloroethane through the human skin. Am Ind Hyg Assoc J 25: 439

    PubMed  Google Scholar 

  • Zimmerli B, Zimmermann H, Müller F (1982) Perchlorethylen in Lebensmitteln. Mitt Gebiete Lebensm Hyg 73: 71–81

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marth, E. Metabolic changes following oral exposure to tetrachloroethylene in subtoxic concentrations. Arch Toxicol 60, 293–299 (1987). https://doi.org/10.1007/BF01234668

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01234668

Key words

Navigation