Skip to main content
Log in

A review of the applications of solid state physics concepts to biological systems

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The evidence for solid state physical processes in diverse biological systems is reviewed. Semiconduction of electrons across the enzyme particles as the rate-limiting process in cytochrome oxidase is evidenced by the peculiar kinetic patterns of this enzyme and by microwave Hall effect measurements. PN junction conduction of electrons is suggested by kinetics of photobiological free radicals in eye and photosynthesis. Superconduction at physiological temperatures may be involved in growth and nerve. Phonons and polarons seem likely to be involved in mitochondrial phosphorylation. Piezoelectricity and pyroelectricity may be involved in growth and nerve. Infrared electromagnetic waves may transmit energy in lipid bilayers of nerve and mitochondria. Complexed sodium and potassium ions in structured cell water may be analogous to valence band electrons in a semiconductor, and the free cations may be considered analogous to conduction band electrons. Ionic processes in cell water therefore resemble electronic conduction processes in solid semiconductors, which leads to kinetic predictions in agreement with experiment. The future of solid state biology depends on the development of new experimental methods able to measure solid state physical properties in biological materials which are non-crystalline, impure, particulate, and wet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Szent-Györgyi,Science,93 (1941) 609.

    ADS  Google Scholar 

  2. B. Rosenberg and E. Postow,Ann. N. Y. Acad. Sci.,158 (1969) 161.

    Google Scholar 

  3. F. W. Cope,Adv. Biol. Med. Physics,13 (1970) 1.

    Google Scholar 

  4. F. Gutmann and L. E. Lyons,Organic Semiconductors (John Wiley and Sons, New York, 1967).

    Google Scholar 

  5. L. I. Boguslavskii and A. V. Vannikov,Organic Semiconductors and Biopolymers (Plenum Press, New York, 1970).

    Google Scholar 

  6. D. D. Eley, inHorizons in Biochemistry (M. Kasha and B. Pullman, eds.) (Academic Press, New York, 1962), pages 341–380.

    Google Scholar 

  7. B. Rosenberg,Nature (London),193 (1962) 364.

    Google Scholar 

  8. B. Rosenberg,J. Chem. Phys.,36 (1962) 816.

    Article  Google Scholar 

  9. A. V. Vannikov and L. I. Boguslavskii,Biofizika,14 (1969) 421.

    Google Scholar 

  10. F. W. Cope,Arch. Biochem. Biophys.,103 (1963) 325.

    Article  Google Scholar 

  11. K. D. Straub,Semiconduction in Certain Proteins (Ph.D. Thesis, Biochemistry Dept., Duke University, Durham, North Carolina, 1967).

    Google Scholar 

  12. F. W. Cope and K. D. Straub,Bull. Math. Biophys.,31 (1970) 761.

    Google Scholar 

  13. E. M. Trukhan,Priborg i Tekhnika Eksperimenta (Experimental Instruments and Techniques), No. 4 (1965) 198.

    Google Scholar 

  14. E. M. Trukhan,Biofizika,11 (1966) 412.

    Google Scholar 

  15. E. M. Trukhan, N. F. Perewoschikof, and M. A. Ostrowski,Biofizika,15 (1970) 1052.

    Google Scholar 

  16. D. D. Eley and R. Pethig,Disc. Faraday Soc.,51 (1971) 164.

    Google Scholar 

  17. D. D. Eley and R. Pethig, inConduction in Low-Mobility Materials (Taylor and Francis, London, 1971).

    Google Scholar 

  18. D. D. Eley and R. Pethig,J. Bioenergetics,2 (1971) 39.

    Article  Google Scholar 

  19. D. D. Eley, R. J. Meyer, and R. Pethig,J. Bioenergetics,3 (1972) 271.

    Article  Google Scholar 

  20. D. D. Eley, R. J. Meyer, and R. Pethig,J. Bioenergetics,4 (1973) 389.

    Article  Google Scholar 

  21. S. Y. Chai and P. O. Vogelhut,J. Appl. Physics,38 (1967) 613.

    Article  Google Scholar 

  22. R. Pethig,J. Biol. Phys.,1 (1973) 193.

    Article  Google Scholar 

  23. K. D. Straub, inFirst European Biophysics Congress (E. Broda, A. Locker and H. Springer-Lederer eds.) (Verlag der Wiener Medizinischen Akademie, Vienna, 1972) Vol. E6/16, pages 265–267.

    Google Scholar 

  24. K. D. Straub,J. Theoret. Biol.,44 (1974) 191.

    Google Scholar 

  25. F. W. Cope,Bull. Math. Biol.,35 (1973) 627.

    Google Scholar 

  26. P. Mühlig,Abh. Deutsch. Akad. Wissenschaft zu Berlin (Klasse für Medizin) No. 4 (1966) 55.

    Google Scholar 

  27. D. deVault and B. Chance,Biophys J.,6 (1966) 825.

    Google Scholar 

  28. T. Holstein,Ann. Phys. (N.Y.),8 (1959) 325.

    MATH  Google Scholar 

  29. T. Holstein,Ann. Phys. (N. Y.),8 (1959) 343.

    MATH  Google Scholar 

  30. W. Siebrand,J. Chem. Phys.,41 (1964) 3574.

    Article  Google Scholar 

  31. R. D. Parks (ed.)Superconductivity (Marcel Dekker, New York, 1969).

    Google Scholar 

  32. I. O. Kulik,The Josephson Effect in Superconductive Tunneling Structures (Israel Program for Scientific Translations, Jerusalem, 1972).

    Google Scholar 

  33. L. Solymar,Superconductive Tunneling and Applications (Wiley, New York, 1972).

    Google Scholar 

  34. W. A. Little,Phys. Rev.,134 (1964) A1416.

    Article  ADS  Google Scholar 

  35. W. A. Little,Sci. Amer.,212 (1965) 21.

    Google Scholar 

  36. V. L. Ginzburg,Soviet Phys. Uspekhii,13 (1970) 335.

    MathSciNet  Google Scholar 

  37. L. Pauling,J. Chem. Phys.,4 (1936) 673.

    Google Scholar 

  38. F. London,J. Phys. Radium,8 (1937) 397.

    Google Scholar 

  39. J. I. Musher,J. Chem. Phys.,43 (1965) 4081.

    Google Scholar 

  40. J. I. Musher,Adv. Magnetic Resonance,2 (1966) 177.

    Google Scholar 

  41. J. A. Pople, W. G. Schneider and H. J. Bernstein,High-Resolution Nuclear Magnetic Resonance (McGraw-Hill Book Co., New York, 1959).

    Google Scholar 

  42. B. P. Dailey,J. Chem. Phys.,41 (1964) 2304.

    Article  Google Scholar 

  43. J. A. Pople and K. Untch,J. Am. Chem. Soc.,88 (1966) 4811.

    Article  Google Scholar 

  44. J. A. Pople,Disc. Faraday Soc.,34 (1962) 7.

    Article  Google Scholar 

  45. L. M. Jackman, F. Sondheimer, Y. Amiel, D. A. Ben-Efraim, Y. Gaoni, R. Wolovsky and A. A. Bothner-By,J. Am. Chem. Soc.,84 (1962) 4307.

    Article  Google Scholar 

  46. V. L. Ginzburg,Phys. Lett.,13 (1964) 101.

    ADS  Google Scholar 

  47. V. L. Ginzburg,Contemp. Phys.,9 (1968) 355.

    ADS  Google Scholar 

  48. M. H. Cohen and D. H. Douglass,Phys. Rev. Lett.,19 (1967) 118.

    ADS  Google Scholar 

  49. E. H. Halpern and A. A. Wolf, inCryogenic Engineering, Vol. 17 (K. D. Timmerhaus ed.) (Plenum Press, New York, 1972).

    Google Scholar 

  50. E. H. Halpern,High Temperature Nonmetallic Superconductors (Report #6-165) (Naval Ship Research and Development Center, Annapolis, Md., 1971).

    Google Scholar 

  51. E. H. Halpern,High-Temperature Nonmetallic Superconductors (Report #3917) (Naval Ship Research and Development Center, Annapolis, Md., 1973).

    Google Scholar 

  52. S. Goldfein,Physiol. Chem. and Physics,6 (1974) 261.

    Google Scholar 

  53. F. W. Cope,Physiol. Chem. and Physics,6 (1974) 405.

    Google Scholar 

  54. K. Antonowicz,Nature (London),247 (1974) 358.

    Article  Google Scholar 

  55. E. L. Frankevich,Disc. Faraday Soc.,51 (1971) 37.

    Article  Google Scholar 

  56. F. W. Cope,Physiol. Chem. and Physics,3 (1971) 403.

    Google Scholar 

  57. M. R. Pereira, L. G. Nutini, J. C. Fardon and E. S. Cook,Proc. Soc. Exp. Biol. Med.,124 (1967) 573.

    Google Scholar 

  58. E. S. Cook, J. C. Fardon, and L. G. Nutini, inBiological Effects of Magnetic Fields, Vol. 2 (M. F. Barnothy, ed.) (Plenum Press, New York, 1967).

    Google Scholar 

  59. F. W. Cope,Physiol. Chem. and Physics,5 (1973) 173.

    Google Scholar 

  60. D. E. Beischer,Ann. N.Y. Acad. Sci.,188 (1971) 324.

    Google Scholar 

  61. A. von Hippel,Molecular Science and Molecular Engineering (John Wiley and Sons, New York, 1959) page 252.

    Google Scholar 

  62. C. A. L. Bassett and R. O. Becker,Science,137 (1962) 1063.

    ADS  Google Scholar 

  63. M. H. Shamos, L. S. Lavine, and M. I. Shamos,Nature (London),197 (1963) 81.

    Google Scholar 

  64. V. A. Bazhenov,Piezoelectric Properties of Wood (Plenum Press, New York, 1961).

    Google Scholar 

  65. E. Giebe and A. Scheibe,Zeitschr. f. Physik,33 (1925) 760.

    Google Scholar 

  66. S. B. Elings and P. Terpstra,Zeitschr. Krist.,67 (1928) 279.

    Google Scholar 

  67. R. Livingston,Ann. N.Y. Acad. Sci.,55 (1952) 800.

    Google Scholar 

  68. L. Frenkel,J. of Res. of Nat. Bu. Stand.,67C (1963) 197.

    Google Scholar 

  69. J. Duchesne and A. Monfils,Bul. Acad. Roy. Belg. (class Sci.),41 (1955) 165.

    Google Scholar 

  70. D. Vasilescu, inPhysico-Chemical Properties of Nucleic Acids (J. Duchesne, ed.) Vol. 1 (Academic Press, New York, 1973).

    Google Scholar 

  71. J. Duchesne and A. Monfils,J. Chem. Phys.,23 (1955) 762.

    Article  Google Scholar 

  72. J. Duchesne and A. Monfils,Compt. Rend. Acad. Sci. Paris,241 (1955) 749.

    Google Scholar 

  73. J. Duchesne and A. Monfils,Nature (London),188 (1960) 405.

    Google Scholar 

  74. J. Duchesne, inHorizons in Biochemistry (M. Kasha and B. Pullman eds.) (Academic Press, New York, 1962).

    Google Scholar 

  75. S. Toulsky and M. Read,Compt. Rend. Acad. Sci. Paris,261 (1965) 4251.

    Google Scholar 

  76. S. Toulsky and M. Read,Compt. Rend. Acad. Sci. Paris,260 (1965) 7030

    Google Scholar 

  77. S. V. Tulskyi, A. K. Kuhushkin and L. A. Blumenfeld, inMolecular Biophysics (G. M. Frank, ed.) (NAUK, Moscow, 1965), pages 41–51 (in Russian).

    Google Scholar 

  78. R. Fürth,Proc. Roy. Soc. (London),A180 (1942) 285.

    ADS  Google Scholar 

  79. T. G. Gibbons,J. Chem. Phys.,60 (1974) 1094.

    Google Scholar 

  80. C. A. L. Bassett, inPhysical and Rehabilitation Medicine (Darling and Downey, eds.) (Saunders, Philadelphia, 1971).

    Google Scholar 

  81. C. A. L. Bassett, R. J. Pawluk, and R. O. Becker,Nature (London) 204 (1964) 652.

    Google Scholar 

  82. R. O. Becker, C. A. L. Bassett, and C. H. Bachman, inBone Biodynamics (H. M. Frost, ed.) (Little Brown and Co., Boston, 1964).

    Google Scholar 

  83. S. D. Smith,Anat. Record,158 (1967) 89.

    Google Scholar 

  84. R. O. Becker, D. G. Murray,Clin. Orthopedics and Rel. Res.,73 (1970) 169.

    Google Scholar 

  85. R. O. Becker,Nature (London),235 (1972) 109.

    Article  ADS  Google Scholar 

  86. R. O. Becker,J. Bone and Joint Surg.,43A (1961) 643.

    Google Scholar 

  87. R. O. Becker,Clin. Orthopedics,83 (1972) 255.

    Google Scholar 

  88. R. O. Becker,Bull. N.Y. Acad. Med.,48 (1972) 627.

    Google Scholar 

  89. S. M. Evans,J. Indust. Hygiene and Tox.,30 (1948) 353.

    Google Scholar 

  90. S. M. Evans and W. Zeit,J. Lab. Clin. Med.,34 (1949) 592.

    Google Scholar 

  91. S. M. Evans and W. Zeit,J. Lab. Clin. Med.,34 (1949) 610.

    Google Scholar 

  92. F. W. Cope,Ann. N.Y. Acad. Sci.,204 (1973) 416.

    Google Scholar 

  93. A. G. Petrov,Proc. First Internat. Colloquium on Phys. and Chem. Information Transfer in Regulation of Reproduction and Ageing (Vazna, Bulgaria, 1974).

  94. R. B. Meyer,Phys. Rev. Lett.,22 (1969) 918.

    Article  ADS  Google Scholar 

  95. A. Derzhanski and A. G. Petrov,Phys. Lett.,36A (1971) 483.

    ADS  Google Scholar 

  96. A. I. Derzhanski and A. G. Petrov,Compt. Rend. de l'Acad. Bulgare des Sci.,25 (1972) 167.

    Google Scholar 

  97. W. Helfrich,Z. Naturforsch.,26A (1971) 833.

    Google Scholar 

  98. D. Schmidt, M. Schadt, and W. Helfrich,Z. Naturforsch.,27A (1972) 277.

    Google Scholar 

  99. A. Derzhanski, A. G. Petrov, K. Khinov, and B. L. Markovski,Bulgarian J. Physics,1 (1974) 165.

    Google Scholar 

  100. F. W. Cope,Bull. Math. Biol.,35 (1973) 31.

    Google Scholar 

  101. J. P. Marton,Physiol. Chem. and Physics,5 (1973) 259.

    ADS  Google Scholar 

  102. F. W. Cope, R. J. Sever, and B. D. Polis,Arch Biochem. Biophys.,100 (1963) 171.

    Article  Google Scholar 

  103. R. H. Ruby, I. D. Kuntz and M. Calvin,Proc. Nat. Acad. Sci. (USA),51 (1964) 515.

    ADS  Google Scholar 

  104. J. Tafel,Z. Phys. Chem.,50 (1905) 641.

    Google Scholar 

  105. G. Kortüm and J. O. Bockris,Textbook of Electrochemistry (Elsevier, Amsterdam, 1951).

    Google Scholar 

  106. J. O. Bockris, inModern Aspects of Electrochemistry (J. O. Bockris and B. E. Conway, eds.) (Butterworths, London, 1954).

    Google Scholar 

  107. D. R. Turner, inThe Electrochemistry of Semiconductors (P. J. Holmes, ed.) (Academic Press, London, 1962).

    Google Scholar 

  108. F. W. Cope,Bull. Math. Biophys.,33 (1971) 39.

    Google Scholar 

  109. F. W. Cope,J. Chem. Phys.,40 (1964) 2653.

    Article  Google Scholar 

  110. F. W. Cope,Proc. Nat. Acad. Sci. (USA),51 (1964) 809.

    ADS  Google Scholar 

  111. F. W. Cope,Bull. Math. Biol.,37 (1975) in press.

  112. F. W. Cope,Bull. Math. Biophys.,33 (1971) 39.

    Google Scholar 

  113. K. Minnaert,Biochim. Biophys. Acta,50 (1961) 23.

    Article  Google Scholar 

  114. F. W. Cope,Bull. Math. Biophys.,27 (1965) 237.

    Google Scholar 

  115. Q. H. Gibson and D. C. Wharton, inStructure and Function of Cytochromes (K. Okunuki, M. D. Kamen, and I. Sekuzu, eds.) (University Park Press, Baltimore, 1968).

    Google Scholar 

  116. F. W. Cope,Bull. Math. Biophys.,33 (1971) 579.

    Google Scholar 

  117. A. L. Hodgkin and A. F. Huxley,J. Physiol.,117 (1952) 500.

    Google Scholar 

  118. N. Chalazonitis,Photochem. Photobiol.,3 (1964) 539.

    Google Scholar 

  119. F. W. Cope,Proc. Nat. Acad. Sci. (USA),61 (1968) 905.

    ADS  Google Scholar 

  120. A. Fraser and A. H. Frey,Biophys. J.,8 (1968) 731.

    Google Scholar 

  121. W. M. Clark,Topics in Physical Chemistry (Williams and Wilkins, Baltimore, 1952) page 102.

    Google Scholar 

  122. F. W. Cope,Bull. Math. Biophys.,29 (1967) 583.

    Google Scholar 

  123. C. C. Grimes, P. L. Richards and S. Shapiro,Phys. Rev. Lett.,8 (1966) 431.

    ADS  Google Scholar 

  124. B. N. Taylor,J. Appl. Phys.,39 (1968) 2490.

    Google Scholar 

  125. J. Clarke,Physics Today,24 (No. 8) (1971) 30.

    Google Scholar 

  126. F. W. Cope,Biophys. J.,9 (1969) 303.

    Google Scholar 

  127. C. F. Hazelwood, B. L. Nichols, and N. F. Chamberlain,Nature (London),222 (1969) 747.

    Google Scholar 

  128. C. F. Hazelwood, D. C. Chang, B. L. Nichols, and D. E. Woessner,Biophys. J.,14 (1974) 583.

    Google Scholar 

  129. F. W. Cope,J. Gen. Physiol.,50 (1967) 1353.

    Article  Google Scholar 

  130. F. W. Cope,Biophys. J.,10 (1970) 843.

    Google Scholar 

  131. R. Damadian and F. W. Cope,Physiol. Chem. and Physics,5 (1973) 511.

    Google Scholar 

  132. F. W. Cope and R. Damadian,Physiol. Chem. and Physics,6 (1974) 17.

    Google Scholar 

  133. R. Damadian and F. W. Cope,Physiol. Chem. and Physics,6 (1974) 309.

    Google Scholar 

  134. F. W. Cope,Bull. Math. Biophys.,27 (1965) 99.

    Google Scholar 

  135. F. W. Cope,Bull. Math. Biophys.,29 (1967) 691.

    Google Scholar 

  136. G. N. Ling,Ann. N.Y. Acad. Sci.,125 (1965) 401.

    Google Scholar 

  137. G. N. Ling,Physiol. Chem. and Physics,2 (1970) 15.

    Google Scholar 

  138. R. Damadian,Science,171 (1971) 1151.

    ADS  Google Scholar 

  139. R. Damadian, K. Zaner, D. Hor and T. DiMaio,Proc. Nat. Acad. Sci. (USA),71 (1974) 1471.

    ADS  Google Scholar 

  140. G. N. Ling,Amer. J. Phys. Med.,34 (1955) 89.

    Google Scholar 

  141. G. N. Ling,Int. Rev. Cytol.,26 (1969) 1.

    Google Scholar 

  142. L. Minkoff and R. Damadian,Biophys. J.,13 (1973) 167.

    Google Scholar 

  143. L. Minkoff and R. Damadian,Biophys. J.,14 (1974) 69.

    Google Scholar 

  144. C. F. Hazelwood (ed.),Ann. N.Y. Acad. Sci.,204 (1973).

  145. G. N. Ling,A Physical Theory of the Living State, (Blaisdell, New York, 1960).

    Google Scholar 

  146. R. Damadian,Biophys. J.,11 (1971) 773.

    Google Scholar 

  147. R. Damadian,Ann. N.Y. Acad. Sci.,204 (1973) 211.

    Google Scholar 

  148. S. Chai and P. Vogelhut,Rev. Sci. Inst.,37 (1966) 1620.

    Google Scholar 

  149. A. Athenstaedt,Nature (London),228 (1970) 830.

    Article  Google Scholar 

  150. S. B. Lang,Nature,212 (1966) 704.

    Google Scholar 

  151. H. Athenstaedt,Z. Zellforsch.,91 (1968) 155.

    Article  Google Scholar 

  152. H. Athenstaedt,Z. Zellforsch.,92 (1968) 428.

    Article  Google Scholar 

  153. H. Athenstaedt,Z. Zellforsch.,93 (1969) 484.

    Google Scholar 

  154. H. Athenstaedt,Z. Zellforsch.,97 (1969) 537.

    Article  Google Scholar 

  155. H. Athenstaedt,Z. Anat. Entwickl. Gesch.,131 (1970) 1 and 21.

    Google Scholar 

  156. H. Athenstaedt,Z. Zellforsch.,98 (1969) 300.

    Article  Google Scholar 

  157. J. McGinness, P. Corry, and P. Proctor,Science,183 (1974) 835.

    Google Scholar 

  158. F. W. Cope, R. J. Sever, and B. D. Polis,Arch. Biochem. Biophys.,100 (1963) 171.

    Article  Google Scholar 

  159. G. Kemeny and B. Rosenberg,J. Chem. Phys.,53 (1970) 3549.

    Article  Google Scholar 

  160. M. V. Volkenstein,J. Theoret. Biol.,34 (1972) 193.

    Google Scholar 

  161. J. McGinness and P. Proctor,J. Theoret. Biol.,39 (1973) 677.

    Google Scholar 

  162. P. Proctor, J. McGinness and P. Corry,J. Theoret. Biol.,48 (1974) 19.

    Google Scholar 

  163. P. Corry, J. McGinness, and E. Armour, inProceedings of 9th International Pigment Conference, (1975) in press.

  164. J. McGinness, P. Corry and E. Armour, inProceedings of 9th International Pigment Conference, (1975) in press.

  165. G. Kemeny and I. Goklany,J. Theoret. Biol.,40 (1973) 107.

    Google Scholar 

  166. T. A. Kaplan and S. D. Mahanti,J. Chem. Phys.,62 (1975) 100.

    Article  ADS  Google Scholar 

  167. M. K. Jain, A. Strickholm, F. P. White and E. H. Cordes,Nature (London),227 (1970) 705.

    Google Scholar 

  168. H. T. Tien,Photochem. and Photobiol.,16 (1972) 271.

    Google Scholar 

  169. L. Y. Wei and B. Y. Woo,Biophys. J.,13 (1973) 877.

    Google Scholar 

  170. P. S. B. Digby,Proc. Roy. Soc.,B161 (1965) 504.

    ADS  Google Scholar 

  171. P. S. B. Digby,Proc. Linn. Soc. Lond.,178 (1967) 129.

    Google Scholar 

  172. P. S. B. Digby,Symp. Zool. Soc. Lond.,19 (1967) 159.

    Google Scholar 

  173. E. J. Lund,J. Exp. Zool.,51 (1928) 265.

    Google Scholar 

  174. E. J. Lund,J. Exp. Zool.,51 (1928) 327.

    Google Scholar 

  175. E. J. Lund, J. N. Pratley and H. F. Rosene,Publ. Inst. Marine Sci. Univ. Texas,10 (1965) 221.

    Google Scholar 

  176. T. L. Jahn,J. Theoret. Biol.,2 (1962) 129.

    Google Scholar 

  177. A. A. Wolf and E. H. Halpern,Physiol. Chem. and Physics, (1975) in press.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Felix Gutmann, who stimulated me to write this, and whose book on organic solid state physics provides a foundation for biological solid state physics.

This work was supported in part by Office of Naval Research Contract NR 105-717.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cope, F.W. A review of the applications of solid state physics concepts to biological systems. J Biol Phys 3, 1–41 (1975). https://doi.org/10.1007/BF02308900

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02308900

Keywords

Navigation