Skip to main content
Log in

A line of rat ovarian surface epithelium provides a continuous source of complex extracellular matrix

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

A spontaneously immortalized, yet non-tumorigenic rat ovarian surface epithelial (ROSE 199) cell line, deposits large amounts of extracellular matrix (ECM) in response to crowding. The characteristics and components of ROSE 199-derived cell-free ECM were compared after three different preparative techniques: treatment with 20 mM ammonium hydroxide, with 1% sodium deoxycholate, or by repeated freeze-thaws. The ECMs were analyzed by histochemistry, immunofluorescence, electron microscopy, and Western immunoblotting. Components of ROSE 199 ECM included laminin, fibronectin, and collagen types I and III. Even though ROSE 199 is an epithelial cell line, striated collagen fibers formed a major part of its matrix. Thus, ROSE 199 matrix consists of both basement membrane and stromal matrix components. This matrix supported the adhesion, spreading, and growth of several cell types without altering their morphology or growth pattern, and enhanced the attachment of some cell types that spread on plastic only with difficulty. Immunofluorescence, electron microscopy, and dry weight determinations indicated that a greater proportion of matrix was retained in preparations obtained by ammonium hydroxide or freeze thaw techniques than after sodium deoxycholate treatment. Ammonium hydroxide and freeze-thaw treated matrices were also superior to sodium deoxycholate preparations as evidenced by enhanced initial cellular adhesion and spreading compared to cells plated on plastic. Residual nuclear material did not seem to affect the biological activity of this matrix. ROSE 199 extracellular matrix provides a novel, complex substratum for cell culture and for studies of matrix functions and synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, A. T.; Auersperg, N. A cell line, ROSE 199, derived from normal rat ovarian surface epithelium. Exp. Cell Biol. 53:181–188; 1985.

    PubMed  CAS  Google Scholar 

  2. Aggler, J. Three-dimensional organization of the extracellular matrix secreted by cultured rat smooth muscle cells. In Vitro Cell. Dev. Biol. 24:633–638; 1988.

    Article  Google Scholar 

  3. Auersperg, N.; Hollinshead, A. C.; Lee, O. B., et al. Detection of herpes simplex virus tumor-associated antigens in human cell lines after long-term cultivation. In: Schlessinger, D., ed. Microbiology. Washington, DC: A.S.M. Press; 1981:302–307.

    Google Scholar 

  4. Auersperg, N.; MacLaren, I. A.; Kruk, P. A. Ovarian surface epithelium: autonomous production of connective tissue-type extracellular matrix. Biol. Reprod. 44:717–724; 1991.

    Article  PubMed  CAS  Google Scholar 

  5. Boyd, D.; Florent, G.; Chakrabarty, S., et al. Alterations of the biological characteristics of a colon carcinoma cell line by colon-derived substrata material. Cancer Res. 48:2825–2831; 1988.

    PubMed  CAS  Google Scholar 

  6. Brauer, P. R.; Keller, J. M. Ultrastructure of a model basement membrane lacking type IV collagen. Anat. Rec. 223:376–383; 1989.

    Article  PubMed  CAS  Google Scholar 

  7. Carley, W. W.; Milici, A. J.; Madri, J. A. Extracellular matrix specificity for the differentiation of capillary endothelial cells. Exp. Cell Res. 178:426–434; 1988.

    Article  PubMed  CAS  Google Scholar 

  8. Carlson, E. C.; Kenney, M. C. Preparation and histoarchitecture of ultrastructurally pure glomerular basement membrane. Renal Physiol. 3:280–287; 1980.

    PubMed  CAS  Google Scholar 

  9. Chang, S.-G.; Toth, K.; Black, J. D., et al. Growth of human renal cortical tissue on collagen gel. In Vitro Cell. Dev. Biol. 28A:128–135; 1992.

    PubMed  CAS  Google Scholar 

  10. Crickard, K.; Crickard, U.; Yoonessi, M. Human ovarian carcinoma cells maintained on extracellular matrix versus plastic. Cancer Res. 43:2762–2767; 1983.

    PubMed  CAS  Google Scholar 

  11. Gillet, W. Artefactual loss of human ovarian surface epithelium: potential clinical significance. Reprod. Fertil. Dev. 3:93–98; 1991.

    Article  Google Scholar 

  12. Gospodarowicz, D. Preparation of extracellular matrices produced by cultured bovine corneal endothelial cells and PF-HR-9 endodermal cells: their use in cell culture. In: Barnes, D. W.; Sirbaski, D. A.; Sato, G. H., eds. Methods for preparation of media, supplements, and substrata for serum-free animal cell culture. New York: Alan R. Liss; 1984:275–293.

    Google Scholar 

  13. Grinnell, F.; Fukamizu, F.; Pawelek, P., et al. Collagen processing, crosslinking, and fibril bundle assembly in matrix produced by fibroblasts in longterm cultures supplemented with ascorbic acid. Exp. Cell Res. 181:483–491; 1989.

    Article  PubMed  CAS  Google Scholar 

  14. Hadley, M. A.; Byers, S. W.; Suarez-Quian, C. A., et al. Extracellular matrix regulates Sertoli cell differentiation, testicular cord formation, and germ cell development in vitro. J. Cell. Biol. 101:1511–1522; 1985.

    Article  PubMed  CAS  Google Scholar 

  15. Hixon, D. C.; Ponce, M. D.; Allison, J. P., et al. Cell surface expression by adult rat hepatocytes of a non-collagen glycoprotein present in rat liver biomatrix. Exp. Cell Res. 152:402–424; 1984.

    Article  Google Scholar 

  16. Hornby, A. E.; Pan, J.; Auersperg, N. Intermediate filaments in rat ovarian surface epithelial cells: changes with neoplastic progression in culture. Biochem. Cell Biol. 70:16–25; 1992.

    Article  PubMed  CAS  Google Scholar 

  17. Inoue, S.; Leblond, C. P.; Laurie, G. W. Ultrastructure of Reichert’s membrane, a multilayered basement membrane in the parietal wall of the rat yolk sac. J. Cell Biol. 97:1524–1537; 1983.

    Article  PubMed  CAS  Google Scholar 

  18. Kleinman, H. K.; Cannon, F. B.; Laurie, G. W., et al. Biological activities of laminin. J. Cell. Biochem. 27:317–325; 1985.

    Article  PubMed  CAS  Google Scholar 

  19. Kleinman, H. K.; McGarvey, M. L.; Hassell, J. R., et al. Basement membrane complexes with biological activity. Biochemistry 25:312–318; 1986.

    Article  PubMed  CAS  Google Scholar 

  20. Kopf-Maier, P.; Zimmermann, B. Organoid reorganization of human tumors under in vitro conditions. Cell Tissue Res. 264:563–576; 1991.

    Article  PubMed  CAS  Google Scholar 

  21. Kruk, P. A.; Auersperg, N. Human ovarian surface epithelial cells are capable of physically restructuring extracellular matrix. Am. J. Obstet. Gynecol. 167:1437–1443; 1992.

    PubMed  CAS  Google Scholar 

  22. Laemmli, U. K. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685; 1970.

    Article  PubMed  CAS  Google Scholar 

  23. Leighton, J.; Tchao, R.; Nichols, J. Radial gradient culture on the inner surface of collagen tubes: organoid growth of normal rat bladder and rat bladder cancer cell line NBT-II. In Vitro Cell. Dev. Biol. 21:713–715; 1985.

    Article  PubMed  CAS  Google Scholar 

  24. Levine, A. E.; Black, B.; Brattain, M. G. Effects ofN,N-dimethylformamide and extracellular matrix on transforming growth factor-β binding to a human colon carcinoma cell line. J. Cell. Physiol. 138:459–466; 1989.

    Article  PubMed  CAS  Google Scholar 

  25. Liotta, L. A.; Lee, C. W.; Morakis, D. J. New method for preparing large surfaces of intact human basement membrane for tumor invasion studies. Cancer Lett. 11:141–152; 1980.

    Article  PubMed  CAS  Google Scholar 

  26. Maines-Bandiera, S. L.; Kruk, P. A.; Auersperg, N. SV40 transformed human ovarian surface epithelial cells escape normal growth controls but retain morphogenetic responses to extracellular matrix. Am. J. Obstet. Gynecol. 167:729–735; 1992.

    PubMed  CAS  Google Scholar 

  27. Massad, L. S.; Mutch, D. G.; Powell, C. B., et al. Expression of a resistance mechanism in ovarian and cervical carcinoma cells prevents their lysis by γ-interferon. Cancer Res. 50:4923–4928; 1990.

    PubMed  CAS  Google Scholar 

  28. Meezen, E.; Hjelle, J. T.; Brendel, K. A simple, versatile, nondisruptive method for the isolation of morphologically and chemically pure basement membranes from several tissues. Life Sci. 17:1721–1732; 1975.

    Article  Google Scholar 

  29. Milici, A. J.; Furie, M. B.; Carley, W. W. The formation of fenestrations and channels by capillary endothelium in vitro. Proc. Natl. Acad. Sci. USA 82:6181–6185; 1985.

    Article  PubMed  CAS  Google Scholar 

  30. Montesano, R. Cell-extracellular matrix interaction in morphogenesis: an in vitro approach. Experientia 42:977–985; 1986.

    Article  PubMed  CAS  Google Scholar 

  31. Morley, P.; Armstrong, D. T.; Gore-Langton, R. E. Fibronectin stimulates growth but not follicle-stimulating hormone-dependent differentiation of rat granulosa cells in vitro. J. Cell. Physiol. 132:226–236; 1987.

    Article  PubMed  CAS  Google Scholar 

  32. Nicosia, S. V.; Johnson, J. H. Surface morphology of the ovarian mesothelium (surface epithelium) and of other pelvic and extrapelvic mesothelial sites in the rabbit. Int. Soc. Gynecol. Pathol. 3:249–260; 1984.

    Article  CAS  Google Scholar 

  33. Nicosia, S. V.; Johnson, J. H.; Steibel, E. J. Isolation and ultrastructure of rabbit ovarian mesothelium (surface epithelium). Int. J. Gynecol. Pathol. 3:348–360; 1984.

    Article  PubMed  CAS  Google Scholar 

  34. Nishida, T.; Ueda, A.; Fukuda, M., et al. Interactions of extracellular collagen and corneal fibroblasts: morphologic and biochemical changes of rabbit corneal cells cultured in a collagen matrix. In Vitro Cell. Dev. Biol. 24:1009–1014; 1988.

    Article  PubMed  CAS  Google Scholar 

  35. O’Guin, W. M.; Scherner, A.; Sun, T.-T. Immunofluorescence staining of keratin filaments in cultured epithelial cells. J. Tissue Cult. Methods 9:123–128; 1985.

    Article  Google Scholar 

  36. Ossowski, L. In vivo invasion of modified chorioallantoic membrane by tumor cells: the role of cell surface-bound urokinase. J. Cell Biol. 107:2437–2445; 1988.

    Article  PubMed  CAS  Google Scholar 

  37. Rojkind, M.; Gatmaitan, Z.; Mackensen, S., et al. Connective tissue biomatrix: its isolation and utilization for long-term cultures of normal rat hepatocytes. J. Cell Biol. 87:255–263; 1980.

    Article  PubMed  CAS  Google Scholar 

  38. Scott-Burden, T.; Resink, T. J.; Burgin, M., et al. Extracellular matrix: differential influence on growth and biosynthesis patterns of vascular smooth muscle cells from SHR and WKY rats. J. Cell. Physiol. 141:267–274; 1989.

    Article  PubMed  CAS  Google Scholar 

  39. Shimo-Oka, T.; Hasegawa, Y.; Ichio, I. Differential properties of attachment of human fibroblasts to various extracellular matrix proteins. Cell Struct. Funct. 13:515–524; 1988.

    Article  PubMed  CAS  Google Scholar 

  40. Siemens, C. H.; Auersperg, N. Serial propagation of human ovarian surface epithelium in tissue culture. J. Cell. Physiol. 134:347–356; 1988.

    Article  PubMed  CAS  Google Scholar 

  41. Simon-Assmann, P.; Bouziges, F.; Daviaud, D., et al. Synthesis of glycosaminoglycans by undifferentiated and differentiated HT29 human colonic cancer cells. Cancer Res. 47:4478–4484; 1987.

    PubMed  CAS  Google Scholar 

  42. Tan, E.; Glassberg, E.; Orlsen, D. R., et al. Extracellular matrix gene expression by human endothelial and smooth muscle cells. Matrix 11:380–387; 1991.

    PubMed  CAS  Google Scholar 

  43. Towbin, H.; Staehelin, T.; Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354; 1979.

    Article  PubMed  CAS  Google Scholar 

  44. Watt, F. The extracellular matrix and cell shape. T.I.B.S. 11:482–485; 1986.

    CAS  Google Scholar 

  45. Young, R. H.; Clement, P. B.; Scully, R. E. The ovary. In: Sternberg, S. S., ed. Diagnostic surgical pathology. New York: Raven Press; 1989:1655–1734.

    Google Scholar 

  46. Zubay, G. Biochemistry. Reading, MA: Addison-Wesley Publishing Co.; 1983:577–590.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruk, P.A., Auersperg, N. A line of rat ovarian surface epithelium provides a continuous source of complex extracellular matrix. In Vitro Cell Dev Biol - Animal 30, 217–225 (1994). https://doi.org/10.1007/BF02632043

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02632043

Key words

Navigation