Skip to main content

Advertisement

Log in

In vivo visualization of nitric oxide and interactions among platelets, leukocytes, and endothelium following hemorrhagic shock and reperfusion

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objectives

We examined changes in nitric oxide (NO) distribution in the mesenteric microcirculation after hemorrhagic shock and reperfusion (H/R), and correlated NO production to leukocyte and platelet behavior.

Materials and methods

The behavior of leukocytes and platelets in mesenteric venules was observed by intravital microscopy at 0.5 and 24 h after H/R in male Wistar rats. Transvascular leakage of fluorescein isothiocyanate-labeled albumin was assessed by epi-illumination. The NO-sensitive dye, 4,5-diaminofluorescein diacetate, was used for imaging NO release.

Results

H/R significantly increased vascular albumin leakage and adhesion of leukocytes and platelets (P < 0.05). In H/R 0.5 h rats, NO production in the venular endothelium declined. However, NO production was elevated in H/R 24 h rats in mast cells (P < 0.05). Leukocyte adherence, platelet adherence, and venular permeability were attenuated by iNOS inhibition.

Conclusion

Mesenteric endothelial cell dysfunction after H/R 0.5 h is associated with reduced NO, whereas after H/R 24 h is related to increase NO in mast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Koike K, Moore EE, Moore FA, Kim FJ, Carl VS, Banerjee A. Gut phospholipase A2 mediates neutrophil priming and lung injury after mesenteric ischemia-reperfusion. Am J Physiol. 1995;268:G397–403.

    PubMed  CAS  Google Scholar 

  2. Childs EW, Udobi KF, Hunter FA, Dhevan V. Evidence of transcellular albumin transport after hemorrhagic shock. Shock. 2005;23:565–70.

    PubMed  CAS  Google Scholar 

  3. Childs EW, Udobi KF, Wood JG, Hunter FA, Smalley DM, Cheung LY. In vivo visualization of reactive oxidants and leukocyte-endothelial adherence following hemorrhagic shock. Shock. 2002;18:423–7.

    Article  PubMed  Google Scholar 

  4. Suematsu M, Tamatani T, Delano FA, Miyasaka M, Forrest M, Suzuki H, et al. Microvascular oxidative stress preceding leukocyte activation elicited by in vivo nitric oxide suppression. Am J Physiol. 1994;266:H2410–5.

    PubMed  CAS  Google Scholar 

  5. Kurose I, Wolf R, Grisham MB, Granger DN. Modulation of ischemia/reperfusion-induced microvascular dysfunction by nitric oxide. Circ Res. 1994;74:376–82.

    PubMed  CAS  Google Scholar 

  6. Barocelli E, Ballabeni V, Ghizzardi P, Cattaruzza F, Bertoni S, Lagrasta CA, et al. The selective inhibition of inducible nitric oxide synthase prevents intestinal ischemia-reperfusion injury in mice. Nitric Oxide. 2006;14:212–8.

    Article  PubMed  CAS  Google Scholar 

  7. Hierholzer C, Kalff JC, Billiar TR, Bauer AJ, Tweardy DJ, Harbrecht BG. Induced nitric oxide promotes intestinal inflammation following hemorrhagic shock. Am J Physiol Gastrointest Liver Physiol. 2004;286:G225–33.

    Article  PubMed  CAS  Google Scholar 

  8. Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991;43:109–42.

    PubMed  CAS  Google Scholar 

  9. Kubes P, Kanwar S, Niu XF, Gaboury JP. Nitric oxide synthesis inhibition induces leukocyte adhesion via superoxide and mast cells. FASEB J. 1993;7:1293–9.

    PubMed  CAS  Google Scholar 

  10. Kajimura M, Michel CC. Flow modulates the transport of K+ through the walls of single perfused mesenteric venules in anaesthetised rats. J Physiol. 1999;521 Pt 3:665–77.

    Article  PubMed  CAS  Google Scholar 

  11. Nakaki T, Kato R. Nitric oxide in vascular remodeling. Jpn Heart J. 1996;37:431–45.

    PubMed  CAS  Google Scholar 

  12. Kojima H, Nakatsubo N, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, et al. Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal Chem. 1998;70:2446–53.

    Article  PubMed  CAS  Google Scholar 

  13. Kashiwagi S, Kajimura M, Yoshimura Y, Suematsu M. Nonendothelial source of nitric oxide in arterioles but not in venules: alternative source revealed in vivo by diaminofluorescein microfluorography. Circ Res. 2002;91:e55–64.

    Article  PubMed  CAS  Google Scholar 

  14. Suematsu M, Okitsu T, Suzuki H, Schmid-Shonbein GW, Ishimura Y. Intravital observation of platelet–endothelial cell interaction during nitric oxide suppression. In: Tsuchiya M, Katori M, Suematsu M, Zweifach BW, editors. Endothelial cell function in blood flow. Amsterdam: Excerpta Medica; 1994. p. 26–33.

    Google Scholar 

  15. Suematsu M, DeLano FA, Poole D, Engler RL, Miyasaka M, Zweifach BW, et al. Spatial and temporal correlation between leukocyte behavior and cell injury in postischemic rat skeletal muscle microcirculation. Lab Invest. 1994;70:684–95.

    PubMed  CAS  Google Scholar 

  16. Suematsu M, Suzuki H, Tamatani T, Iigou Y, DeLano FA, Miyasaka M, et al. Impairment of selectin-mediated leukocyte adhesion to venular endothelium in spontaneously hypertensive rats. J Clin Invest. 1995;96:2009–16.

    Article  PubMed  CAS  Google Scholar 

  17. Katayama T, Ikeda Y, Handa M, Tamatani T, Sakamoto S, Ito M, et al. Immunoneutralization of glycoprotein Ibalpha attenuates endotoxin-induced interactions of platelets and leukocytes with rat venular endothelium in vivo. Circ Res. 2000;86:1031–7.

    PubMed  CAS  Google Scholar 

  18. Kubes P, Gaboury JP. Rapid mast cell activation causes leukocyte-dependent and -independent permeability alterations. Am J Physiol. 1996;271:H2438–46.

    PubMed  CAS  Google Scholar 

  19. Garvey EP, Oplinger JA, Furfine ES, Kiff RJ, Laszlo F, Whittle BJ, et al. 1400 W is a slow, tight binding, and highly selective inhibitor of inducible nitric-oxide synthase in vitro and in vivo. J Biol Chem. 1997;272:4959–63.

    Article  PubMed  CAS  Google Scholar 

  20. Zhao X, Chen YR, He G, Zhang A, Druhan LJ, Strauch AR, et al. Endothelial nitric oxide synthase (NOS3) knockout decreases NOS2 induction, limiting hyperoxygenation and conferring protection in the postischemic heart. Am J Physiol Heart Circ Physiol. 2007;292:H1541–50.

    Article  PubMed  CAS  Google Scholar 

  21. Granger DN, Kvietys PR, Perry MA. Leukocyte–endothelial cell adhesion induced by ischemia and reperfusion. Can J Physiol Pharmacol. 1993;71:67–75.

    PubMed  CAS  Google Scholar 

  22. Deitch EA, Xu D, Franko L, Ayala A, Chaudry IH. Evidence favoring the role of the gut as a cytokine-generating organ in rats subjected to hemorrhagic shock. Shock. 1994;1:141–5.

    Article  PubMed  CAS  Google Scholar 

  23. Cooper D, Chitman KD, Williams MC, Granger DN. Time-dependent platelet-vessel wall interactions induced by intestinal ischemia-reperfusion. Am J Physiol Gastrointest Liver Physiol. 2003;284:G1027–33.

    PubMed  CAS  Google Scholar 

  24. Nishijima K, Kiryu J, Tsujikawa A, Honjo M, Nonaka A, Yamashiro K, et al. In vivo evaluation of platelet–endothelial interactions after transient retinal ischemia. Invest Ophthalmol Vis Sci. 2001;42:2102–9.

    PubMed  CAS  Google Scholar 

  25. Khandoga A, Biberthaler P, Enders G, Axmann S, Hutter J, Messmer K, et al. Platelet adhesion mediated by fibrinogen-intercellular adhesion molecule-1 binding induces tissue injury in the postischemic liver in vivo. Transplantation. 2002;74:681–8.

    Article  PubMed  CAS  Google Scholar 

  26. Cooper D, Russell J, Chitman KD, Williams MC, Wolf RE, Granger DN. Leukocyte dependence of platelet adhesion in postcapillary venules. Am J Physiol Heart Circ Physiol. 2004;286:H1895–900.

    Article  PubMed  CAS  Google Scholar 

  27. Kim MH, Harris NR. Leukocyte adherence inhibits adenosine-dependent venular control of arteriolar diameter and nitric oxide. Am J Physiol Heart Circ Physiol. 2006;291:H724–31.

    Article  PubMed  CAS  Google Scholar 

  28. Harris NR, Whatley JR, Carter PR, Specian RD. Venular constriction of submucosal arterioles induced by dextran sodium sulfate. Inflamm Bowel Dis. 2005;11:806–13.

    Article  PubMed  Google Scholar 

  29. Chen KH, Reece LM, Leary JF. Mitochondrial glutathione modulates TNF-alpha-induced endothelial cell dysfunction. Free Radic Biol Med. 1999;27:100–9.

    Article  PubMed  CAS  Google Scholar 

  30. Eppihimer MJ, Russell J, Anderson DC, Epstein CJ, Laroux S, Granger DN. Modulation of P-selectin expression in the postischemic intestinal microvasculature. Am J Physiol. 1997;273:G1326–32.

    PubMed  CAS  Google Scholar 

  31. Parmentier S, Bohme GA, Lerouet D, Damour D, Stutzmann JM, Margaill I, et al. Selective inhibition of inducible nitric oxide synthase prevents ischaemic brain injury. Br J Pharmacol. 1999;127:546–52.

    Article  PubMed  CAS  Google Scholar 

  32. Lin HI, Chou SJ, Wang D, Feng NH, Feng E, Chen CF. Reperfusion liver injury induces down-regulation of eNOS and up-regulation of iNOS in lung tissues. Transplant Proc. 2006;38:2203–6.

    Article  PubMed  CAS  Google Scholar 

  33. Kubes P, Ibbotson G, Russell J, Wallace JL, Granger DN. Role of platelet-activating factor in ischemia/reperfusion-induced leukocyte adherence. Am J Physiol. 1990;259:G300–5.

    PubMed  CAS  Google Scholar 

  34. Boros M, Kaszaki J, Nagy S. Histamine release during intestinal ischemia-reperfusion: role of iron ions and hydrogen peroxide. Circ Shock. 1991;35:174–80.

    PubMed  CAS  Google Scholar 

  35. Messina A, Knight KR, Dowsing BJ, Zhang B, Phan LH, Hurley JV, et al. Localization of inducible nitric oxide synthase to mast cells during ischemia/reperfusion injury of skeletal muscle. Lab Invest. 2000;80:423–31.

    PubMed  CAS  Google Scholar 

  36. Gilchrist M, Savoie M, Nohara O, Wills FL, Wallace JL, Befus AD. Nitric oxide synthase and nitric oxide production in in vivo-derived mast cells. J Leukoc Biol. 2002;71:618–24.

    PubMed  CAS  Google Scholar 

  37. Hierholzer C, Billiar TR. Molecular mechanisms in the early phase of hemorrhagic shock. Langenbecks Arch Surg. 2001;386:302–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomihiro Katayama.

Additional information

Responsible Editor: M. Katori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiratsuka, M., Katayama, T., Uematsu, K. et al. In vivo visualization of nitric oxide and interactions among platelets, leukocytes, and endothelium following hemorrhagic shock and reperfusion. Inflamm. Res. 58, 463–471 (2009). https://doi.org/10.1007/s00011-009-0011-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-009-0011-0

Keywords

Navigation