Skip to main content

Advertisement

Log in

Trends on polymer- and lipid-based nanostructures for parenteral drug delivery to tumors

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The dawn of the state-of-the-art methods of cancer treatments, nano-based delivery systems, has dispensed with the mainstream chemotherapy for being inadequate in yielding productive results and the numerous reported side effects. The popularity of this complementary approach in the course of the last two decades has been primarily attributed to its capacity to elevate the therapeutic index of anticancer drugs as well as removing the impassable delivery barriers in solid tumors with the minimal damage to the normal tissues.

Methods

The PubMed database was consulted to compile this review.

Results

A wide range of minuscule organic and inorganic nanomaterials, with dimensions not exceeding hundred nanometers, has led to hope for cancer therapy to flare-up once again due to possessing a number of exclusive traits for passive and active tumor targeting, some of which are EPR effect, high interstitial pressure of tumor, overexpressed receptors and angiogenesis. Although a limited number of liposomal and polymer-based therapeutic nanoparticles have gained applicability, a vast number of nanoparticles are still being trailed in order to be fully developed.

Conclusions

This study provides an overview of the advantages/disadvantages of nanocarriers for cancer drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7(11):653–664. doi:10.1038/nrclinonc.2010.139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Feng L, Mumper RJ (2013) A critical review of lipid-based nanoparticles for taxane delivery. Cancer Lett 334(2):157–175. doi:10.1016/j.canlet.2012.07.006

    Article  CAS  PubMed  Google Scholar 

  3. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25. doi:10.1016/j.addr.2013.11.009

    Article  CAS  PubMed  Google Scholar 

  4. Li Y, Wang J, Wientjes MG, Au JL (2012) Delivery of nanomedicines to extracellular and intracellular compartments of a solid tumor. Adv Drug Deliv Rev 64(1):29–39. doi:10.1016/j.addr.2011.04.006

    Article  CAS  PubMed  Google Scholar 

  5. Dong X, Mumper RJ (2010) Nanomedicinal strategies to treat multidrug-resistant tumors: current progress. Nanomedicine (Lond) 5(4):597–615. doi:10.2217/nnm.10.35

    Article  CAS  Google Scholar 

  6. Dawidczyk CM, Kim C, Park JH, Russell LM, Lee KH, Pomper MG, Searson PC (2014) State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines. J Control Release 187:133–144. doi:10.1016/j.jconrel.2014.05.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hollis CP, Weiss HL, Leggas M, Evers BM, Gemeinhart RA, Li T (2013) Biodistribution and bioimaging studies of hybrid paclitaxel nanocrystals: lessons learned of the EPR effect and image-guided drug delivery. J Control Release 172(1):12–21. doi:10.1016/j.jconrel.2013.06.039

    Article  CAS  PubMed  Google Scholar 

  8. Rofstad EK, Ruud EB, Mathiesen B, Galappathi K (2010) Associations between radiocurability and interstitial fluid pressure in human tumor xenografts without hypoxic tissue. Clin Cancer Res 16(3):936–945. doi:10.1158/1078-0432.ccr-09-2718

    Article  CAS  PubMed  Google Scholar 

  9. Nichols JW, Bae YH (2012) Odyssey of a cancer nanoparticle: from injection site to site of action. Nano Today 7(6):606–618. doi:10.1016/j.nantod.2012.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maeda H, Sawa T, Konno T (2001) Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 74(1–3):47–61

    Article  CAS  PubMed  Google Scholar 

  11. Kim R, Emi M, Tanabe K (2007) Cancer immunoediting from immune surveillance to immune escape. Immunology 121(1):1–14. doi:10.1111/j.1365-2567.2007.02587.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Egeblad M, Nakasone ES, Werb Z (2010) Tumors as organs: complex tissues that interface with the entire organism. Dev Cell 18(6):884–901. doi:10.1016/j.devcel.2010.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Choi YP, Shim HS, Gao MQ, Kang S, Cho NH (2011) Molecular portraits of intratumoral heterogeneity in human ovarian cancer. Cancer Lett 307(1):62–71. doi:10.1016/j.canlet.2011.03.018

    Article  CAS  PubMed  Google Scholar 

  14. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62. doi:10.1126/science.1104819

    Article  CAS  PubMed  Google Scholar 

  15. Nichols JW, Bae YH (2014) EPR: evidence and fallacy. J Control Release 190:451–464. doi:10.1016/j.jconrel.2014.03.057

    Article  CAS  PubMed  Google Scholar 

  16. Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153(3):198–205. doi:10.1016/j.jconrel.2011.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kumar A, Chen F, Mozhi A, Zhang X, Zhao Y, Xue X, Hao Y, Zhang X, Wang PC, Liang XJ (2013) Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation. Nanoscale 5(18):8307–8325. doi:10.1039/c3nr01525d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Theek B, Gremse F, Kunjachan S, Fokong S, Pola R, Pechar M, Deckers R, Storm G, Ehling J, Kiessling F, Lammers T (2014) Characterizing EPR-mediated passive drug targeting using contrast-enhanced functional ultrasound imaging. J Control Release 182:83–89. doi:10.1016/j.jconrel.2014.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rawat M, Singh D, Saraf S, Saraf S (2006) Nanocarriers: promising vehicle for bioactive drugs. Biol Pharm Bull 29(9):1790–1798

    Article  CAS  PubMed  Google Scholar 

  20. Benhabbour SR, Luft JC, Kim D, Jain A, Wadhwa S, Parrott MC, Liu R, DeSimone JM, Mumper RJ (2012) In vitro and in vivo assessment of targeting lipid-based nanoparticles to the epidermal growth factor-receptor (EGFR) using a novel Heptameric ZEGFR domain. J Control Release 158(1):63–71. doi:10.1016/j.jconrel.2011.10.013

    Article  CAS  PubMed  Google Scholar 

  21. Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65(1):71–79. doi:10.1016/j.addr.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  22. Rabanel JM, Hildgen P, Banquy X (2014) Assessment of PEG on polymeric particles surface, a key step in drug carrier translation. J Control Release 185:71–87. doi:10.1016/j.jconrel.2014.04.017

    Article  CAS  PubMed  Google Scholar 

  23. Jia F, Liu X, Li L, Mallapragada S, Narasimhan B, Wang Q (2013) Multifunctional nanoparticles for targeted delivery of immune activating and cancer therapeutic agents. J Control Release 172(3):1020–1034. doi:10.1016/j.jconrel.2013.10.012

    Article  CAS  PubMed  Google Scholar 

  24. Danhier F, Feron O, Preat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148(2):135–146. doi:10.1016/j.jconrel.2010.08.027

    Article  CAS  PubMed  Google Scholar 

  25. Arias JL (2011) Drug targeting strategies in cancer treatment: an overview. Mini Rev Med Chem 11(1):1–17

    Article  CAS  PubMed  Google Scholar 

  26. Maeda H (2012) Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. J Controll Release 164(2):138–144. doi:10.1016/j.jconrel.2012.04.038

    Article  CAS  Google Scholar 

  27. Lammers T, Kiessling F, Hennink WE, Storm G (2012) Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release 161(2):175–187. doi:10.1016/j.jconrel.2011.09.063

    Article  CAS  PubMed  Google Scholar 

  28. Kopecek J (2013) Polymer-drug conjugates: origins, progress to date and future directions. Adv Drug Deliv Rev 65(1):49–59. doi:10.1016/j.addr.2012.10.014

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y, Huang Y, Li S (2014) Polymeric micelles: nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech 15(4):862–871. doi:10.1208/s12249-014-0113-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lu Y, Park K (2013) Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm 453(1):198–214. doi:10.1016/j.ijpharm.2012.08.042

    Article  CAS  PubMed  Google Scholar 

  31. Perez-Herrero E, Fernandez-Medarde A (2015) Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 93:52–79. doi:10.1016/j.ejpb.2015.03.018

    Article  CAS  PubMed  Google Scholar 

  32. Oerlemans C, Bult W, Bos M, Storm G, Nijsen JF, Hennink WE (2010) Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res 27(12):2569–2589. doi:10.1007/s11095-010-0233-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Deng C, Jiang Y, Cheng R, Meng F, Zhong Z (2012) Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: promises, progress and prospects. Nano Today 7(5):467–480. doi:10.1016/j.nantod.2012.08.005

    Article  CAS  Google Scholar 

  34. Yang Y, Pan D, Luo K, Li L, Gu Z (2013) Biodegradable and amphiphilic block copolymer-doxorubicin conjugate as polymeric nanoscale drug delivery vehicle for breast cancer therapy. Biomaterials 34(33):8430–8443. doi:10.1016/j.biomaterials.2013.07.037

    Article  CAS  PubMed  Google Scholar 

  35. Loh XJ, del Barrio J, Toh PP, Lee TC, Jiao D, Rauwald U, Appel EA, Scherman OA (2012) Triply triggered doxorubicin release from supramolecular nanocontainers. Biomacromolecules 13(1):84–91. doi:10.1021/bm201588m

    Article  CAS  PubMed  Google Scholar 

  36. Yan F, Li L, Deng Z, Jin Q, Chen J, Yang W, Yeh CK, Wu J, Shandas R, Liu X, Zheng H (2013) Paclitaxel-liposome-microbubble complexes as ultrasound-triggered therapeutic drug delivery carriers. J Control Release 166(3):246–255. doi:10.1016/j.jconrel.2012.12.025

    Article  CAS  PubMed  Google Scholar 

  37. Luo Z, Hu Y, Cai K, Ding X, Zhang Q, Li M, Ma X, Zhang B, Zeng Y, Li P, Li J, Liu J, Zhao Y (2014) Intracellular redox-activated anticancer drug delivery by functionalized hollow mesoporous silica nanoreservoirs with tumor specificity. Biomaterials 35(27):7951–7962. doi:10.1016/j.biomaterials.2014.05.058

    Article  CAS  PubMed  Google Scholar 

  38. Liu J, Huang Y, Kumar A, Tan A, Jin S, Mozhi A, Liang XJ (2014) pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv 32(4):693–710. doi:10.1016/j.biotechadv.2013.11.009

    Article  CAS  PubMed  Google Scholar 

  39. Felber AE, Dufresne MH, Leroux JC (2012) pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv Drug Deliv Rev 64(11):979–992. doi:10.1016/j.addr.2011.09.006

    Article  CAS  PubMed  Google Scholar 

  40. Bae YM, Park YI, Nam SH, Kim JH, Lee K, Kim HM, Yoo B, Choi JS, Lee KT, Hyeon T, Suh YD (2012) Endocytosis, intracellular transport, and exocytosis of lanthanide-doped upconverting nanoparticles in single living cells. Biomaterials 33(35):9080–9086. doi:10.1016/j.biomaterials.2012.08.039

    Article  CAS  PubMed  Google Scholar 

  41. Costantino L, Boraschi D (2012) Is there a clinical future for polymeric nanoparticles as brain-targeting drug delivery agents? Drug Discov Today 17(7–8):367–378. doi:10.1016/j.drudis.2011.10.028

    Article  CAS  PubMed  Google Scholar 

  42. Ulbrich K, Subr V (2004) Polymeric anticancer drugs with pH-controlled activation. Adv Drug Deliv Rev 56(7):1023–1050. doi:10.1016/j.addr.2003.10.040

    Article  CAS  PubMed  Google Scholar 

  43. Tan ML, Choong PF, Dass CR (2010) Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides 31(1):184–193. doi:10.1016/j.peptides.2009.10.002

    Article  CAS  PubMed  Google Scholar 

  44. Locatelli E, Comes Franchini M (2012) Biodegradable PLGA-b-PEG polymeric nanoparticles: synthesis, properties, and nanomedical applications as drug delivery system. J Nanopart Res 14(12):1–17. doi:10.1007/s11051-012-1316-4

    Article  CAS  Google Scholar 

  45. Lai P, Daear W, Lobenberg R, Prenner EJ (2014) Overview of the preparation of organic polymeric nanoparticles for drug delivery based on gelatine, chitosan, poly(d, l-lactide-co-glycolic acid) and polyalkylcyanoacrylate. Colloids Surf B Biointerfaces 118:154–163. doi:10.1016/j.colsurfb.2014.03.017

    Article  CAS  PubMed  Google Scholar 

  46. Fernandez-Fernandez A, Manchanda R, McGoron AJ (2011) Theranostic applications of nanomaterials in cancer: drug delivery, image-guided therapy, and multifunctional platforms. Appl Biochem Biotechnol 165(7–8):1628–1651. doi:10.1007/s12010-011-9383-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang A, Gu F, Farokhzad O (2009) Nanoparticles for Cancer Diagnosis and Therapy. In: Webster TJ (ed) Safety of Nanoparticles. Nanostructure Science and Technology. Springer New York, pp 209–235. doi:10.1007/978-0-387-78608-7_10

  48. Herrero EP, Alonso MJ, Csaba N (2012) Polymer-based oral peptide nanomedicines. Ther Deliv 3(5):657–668

    Article  CAS  PubMed  Google Scholar 

  49. Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65(1):36–48. doi:10.1016/j.addr.2012.09.037

    Article  CAS  PubMed  Google Scholar 

  50. Sen K, Mandal M (2013) Second generation liposomal cancer therapeutics: transition from laboratory to clinic. Int J Pharm 448(1):28–43. doi:10.1016/j.ijpharm.2013.03.006

    Article  CAS  PubMed  Google Scholar 

  51. Fan Y, Zhang Q (2013) Development of liposomal formulations: from concept to clinical investigations. Asian J Pharm Sci 8(2):81–87. doi:10.1016/j.ajps.2013.07.010

    Article  CAS  Google Scholar 

  52. Szebeni J (2005) Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity. Toxicology 216(2–3):106–121. doi:10.1016/j.tox.2005.07.023

    Article  CAS  PubMed  Google Scholar 

  53. Cosco D, Paolino D, Cilurzo F, Casale F, Fresta M (2012) Gemcitabine and tamoxifen-loaded liposomes as multidrug carriers for the treatment of breast cancer diseases. Int J Pharm 422(1–2):229–237. doi:10.1016/j.ijpharm.2011.10.056

    Article  CAS  PubMed  Google Scholar 

  54. Brown S, Khan DR (2012) The treatment of breast cancer using liposome technology. J Drug Deliv 2012:212965. doi:10.1155/2012/212965

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Infante JR, Keedy VL, Jones SF, Zamboni WC, Chan E, Bendell JC, Lee W, Wu H, Ikeda S, Kodaira H, Rothenberg ML, Burris HA 3rd (2012) Phase I and pharmacokinetic study of IHL-305 (PEGylated liposomal irinotecan) in patients with advanced solid tumors. Cancer Chemother Pharmacol 70(5):699–705. doi:10.1007/s00280-012-1960-5

    Article  CAS  PubMed  Google Scholar 

  56. Blanco E, Hsiao A, Mann AP, Landry MG, Meric-Bernstam F, Ferrari M (2011) Nanomedicine in cancer therapy: innovative trends and prospects. Cancer Sci 102(7):1247–1252. doi:10.1111/j.1349-7006.2011.01941.x

    Article  CAS  PubMed  Google Scholar 

  57. Kono K, Ozawa T, Yoshida T, Ozaki F, Ishizaka Y, Maruyama K, Kojima C, Harada A, Aoshima S (2010) Highly temperature-sensitive liposomes based on a thermosensitive block copolymer for tumor-specific chemotherapy. Biomaterials 31(27):7096–7105. doi:10.1016/j.biomaterials.2010.05.045

    Article  CAS  PubMed  Google Scholar 

  58. Calderon M, Quadir MA, Strumia M, Haag R (2010) Functional dendritic polymer architectures as stimuli-responsive nanocarriers. Biochimie 92(9):1242–1251. doi:10.1016/j.biochi.2010.02.017

    Article  CAS  PubMed  Google Scholar 

  59. Fleige E, Quadir MA, Haag R (2012) Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev 64(9):866–884. doi:10.1016/j.addr.2012.01.020

    Article  CAS  PubMed  Google Scholar 

  60. Park SM, Kim MS, Park SJ, Park ES, Choi KS, Kim YS, Kim HR (2013) Novel temperature-triggered liposome with high stability: formulation, in vitro evaluation, and in vivo study combined with high-intensity focused ultrasound (HIFU). J Control Release 170(3):373–379. doi:10.1016/j.jconrel.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  61. Huwyler J, Drewe J, Krahenbuhl S (2008) Tumor targeting using liposomal antineoplastic drugs. Int J Nanomedicine 3(1):21–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Drummond DC, Noble CO, Guo Z, Hayes ME, Connolly-Ingram C, Gabriel BS, Hann B, Liu B, Park JW, Hong K, Benz CC, Marks JD, Kirpotin DB (2010) Development of a highly stable and targetable nanoliposomal formulation of topotecan. J Control Release 141(1):13–21. doi:10.1016/j.jconrel.2009.08.006

    Article  CAS  PubMed  Google Scholar 

  63. Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2(10):750–763. doi:10.1038/nrc903

    Article  CAS  PubMed  Google Scholar 

  64. Torchilin VP (2007) Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J 9(2):E128–E147. doi:10.1208/aapsj0902015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Panyam J, Dali MM, Sahoo SK, Ma W, Chakravarthi SS, Amidon GL, Levy RJ, Labhasetwar V (2003) Polymer degradation and in vitro release of a model protein from poly(D, L-lactide-co-glycolide) nano- and microparticles. J Control Release 92(1–2):173–187

    Article  CAS  PubMed  Google Scholar 

  66. Arleth L, Ashok B, Onyuksel H, Thiyagarajan P, Jacob J, Hjelm RP (2005) Detailed structure of hairy mixed micelles formed by phosphatidylcholine and PEGylated phospholipids in aqueous media. Langmuir 21(8):3279–3290. doi:10.1021/la047588y

    Article  CAS  PubMed  Google Scholar 

  67. Muqbil I, Masood A, Sarkar FH, Mohammad RM, Azmi AS (2011) Progress in nanotechnology based approaches to enhance the potential of chemopreventive agents. Cancers (Basel) 3(1):428–445. doi:10.3390/cancers3010428

    Article  CAS  Google Scholar 

  68. Das S, Chaudhury A (2011) Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech 12(1):62–76. doi:10.1208/s12249-010-9563-0

    Article  CAS  PubMed  Google Scholar 

  69. Rostami E, Kashanian S, Azandaryani AH, Faramarzi H, Dolatabadi JE, Omidfar K (2014) Drug targeting using solid lipid nanoparticles. Chem Phys Lipids. doi:10.1016/j.chemphyslip.2014.03.006

    PubMed  Google Scholar 

  70. Mehnert W, Mäder K (2012) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 64:83–101. doi:10.1016/j.addr.2012.09.021

    Article  Google Scholar 

  71. Kakde D, Jain D, Shrivastava V, Kakde R, Patil A (2011) Cancer therapeutics-opportunities, challenges and advances in drug delivery. J Appl Pharm Sci 1(9):1–10

    Google Scholar 

  72. Wissing SA, Kayser O, Muller RH (2004) Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 56(9):1257–1272. doi:10.1016/j.addr.2003.12.002

    Article  CAS  PubMed  Google Scholar 

  73. Liu D, Liu Z, Wang L, Zhang C, Zhang N (2011) Nanostructured lipid carriers as novel carrier for parenteral delivery of docetaxel. Colloids Surf B Biointerfaces 85(2):262–269. doi:10.1016/j.colsurfb.2011.02.038

    Article  CAS  PubMed  Google Scholar 

  74. Sainsbury F, Zeng B, Middelberg APJ (2014) Towards designer nanoemulsions for precision delivery of therapeutics. Cur Opin Chem Eng 4:11–17. doi:10.1016/j.coche.2013.12.007

    Article  Google Scholar 

  75. Mandal B, Bhattacharjee H, Mittal N, Sah H, Balabathula P, Thoma LA, Wood GC (2013) Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine 9(4):474–491. doi:10.1016/j.nano.2012.11.010

    CAS  PubMed  Google Scholar 

  76. Hadinoto K, Sundaresan A, Cheow WS (2013) Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm 85(3):427–443. doi:10.1016/j.ejpb.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  77. Pensado A, Seijo B, Sanchez A (2014) Current strategies for DNA therapy based on lipid nanocarriers. Expert Opin Drug Deliv 11(11):1721–1731. doi:10.1517/17425247.2014.935337

    Article  CAS  PubMed  Google Scholar 

  78. Narvekar M, Xue HY, Wong HL (2012) A novel hybrid delivery system: polymer-oil nanostructured carrier for controlled delivery of highly lipophilic drug all-trans-retinoic acid (ATRA). Int J Pharm 436(1–2):721–731. doi:10.1016/j.ijpharm.2012.07.042

    Article  CAS  PubMed  Google Scholar 

  79. Chatterjee DK, Wolfe T, Lee J, Brown AP, Singh PK, Bhattarai SR, Diagaradjane P, Krishnan S (2013) Convergence of nanotechnology with radiation therapy-insights and implications for clinical translation. Transl Cancer Res 2(4):256–268. doi:10.3978/j.issn.2218-676X.2013.08.10

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Jain AK, Das M, Swarnakar NK, Jain S (2011) Engineered PLGA nanoparticles: an emerging delivery tool in cancer therapeutics. Crit Rev Ther Drug Carrier Syst 28(1):1–45

    Article  CAS  PubMed  Google Scholar 

  81. Deshpande PP, Biswas S, Torchilin VP (2013) Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond) 8(9):1509–1528. doi:10.2217/nnm.13.118

    Article  CAS  Google Scholar 

  82. Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60(15):1615–1626. doi:10.1016/j.addr.2008.08.005

    Article  CAS  PubMed  Google Scholar 

  83. Yu MK, Park J, Jon S (2012) Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2(1):3–44. doi:10.7150/thno.3463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sanna V, Pala N, Sechi M (2014) Targeted therapy using nanotechnology: focus on cancer. Int J Nanomedicine 9:467–483. doi:10.2147/ijn.s36654

    CAS  PubMed  PubMed Central  Google Scholar 

  85. McCarthy JR, Bhaumik J, Karver MR, Sibel Erdem S, Weissleder R (2010) Targeted nanoagents for the detection of cancers. Mol Oncol 4(6):511–528. doi:10.1016/j.molonc.2010.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zwicke GL, Mansoori GA, Jeffery CJ (2012) Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev. doi:10.3402/nano.v3i0.18496

    PubMed  PubMed Central  Google Scholar 

  87. Low PS, Antony AC (2004) Folate receptor-targeted drugs for cancer and inflammatory diseases. Adv Drug Deliv Rev 56(8):1055–1058. doi:10.1016/j.addr.2004.02.003

    Article  CAS  PubMed  Google Scholar 

  88. Liu Y, Li K, Pan J, Liu B, Feng SS (2010) Folic acid conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of Docetaxel. Biomaterials 31(2):330–338. doi:10.1016/j.biomaterials.2009.09.036

    Article  CAS  PubMed  Google Scholar 

  89. Pirollo KF, Chang EH (2008) Does a targeting ligand influence nanoparticle tumor localization or uptake? Trends Biotechnol 26(10):552–558. doi:10.1016/j.tibtech.2008.06.007

    Article  CAS  PubMed  Google Scholar 

  90. Hussain S, Pluckthun A, Allen TM, Zangemeister-Wittke U (2007) Antitumor activity of an epithelial cell adhesion molecule targeted nanovesicular drug delivery system. Mol Cancer Ther 6(11):3019–3027. doi:10.1158/1535-7163.mct-07-0615

    Article  CAS  PubMed  Google Scholar 

  91. Ahn HK, Jung M, Sym SJ, Shin DB, Kang SM, Kyung SY, Park JW, Jeong SH, Cho EK (2014) A phase II trial of Cremorphor EL-free paclitaxel (Genexol-PM) and gemcitabine in patients with advanced non-small cell lung cancer. Cancer Chemother Pharmacol 74(2):277–282. doi:10.1007/s00280-014-2498-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Matsumura Y (2011) Preclinical and clinical studies of NK012, an SN-38-incorporating polymeric micelles, which is designed based on EPR effect. Adv Drug Deliv Rev 63(3):184–192. doi:10.1016/j.addr.2010.05.008

    Article  CAS  PubMed  Google Scholar 

  93. Hamaguchi T, Doi T, Eguchi-Nakajima T, Kato K, Yamada Y, Shimada Y, Fuse N, Ohtsu A, Matsumoto S, Takanashi M, Matsumura Y (2010) Phase I study of NK012, a novel SN-38-incorporating micellar nanoparticle, in adult patients with solid tumors. Clin Cancer Res 16(20):5058–5066. doi:10.1158/1078-0432.ccr-10-0387

    Article  CAS  PubMed  Google Scholar 

  94. Lee SW, Yun MH, Jeong SW, In CH, Kim JY, Seo MH, Pai CM, Kim SO (2011) Development of docetaxel-loaded intravenous formulation, Nanoxel-PM using polymer-based delivery system. J Control Release 155(2):262–271. doi:10.1016/j.jconrel.2011.06.012

    Article  CAS  PubMed  Google Scholar 

  95. Liu D, He C, Wang AZ, Lin W (2013) Application of liposomal technologies for delivery of platinum analogs in oncology. Int J Nanomedicine 8:3309–3319. doi:10.2147/ijn.s38354

    PubMed  PubMed Central  Google Scholar 

  96. Harrington KJ, Lewanski CR, Northcote AD, Whittaker J, Wellbank H, Vile RG, Peters AM, Stewart JS (2001) Phase I-II study of pegylated liposomal cisplatin (SPI-077) in patients with inoperable head and neck cancer. Ann Oncol 12(4):493–496

    Article  CAS  PubMed  Google Scholar 

  97. Schutz CA, Juillerat-Jeanneret L, Mueller H, Lynch I, Riediker M (2013) Therapeutic nanoparticles in clinics and under clinical evaluation. Nanomedicine (Lond) 8(3):449–467. doi:10.2217/nnm.13.8

    Article  CAS  Google Scholar 

  98. Tippayamontri T, Kotb R, Paquette B, Sanche L (2013) Efficacy of cisplatin and Lipoplatin in combined treatment with radiation of a colorectal tumor in nude mouse. Anticancer Res 33(8):3005–3014

    CAS  PubMed  Google Scholar 

  99. Stathopoulos GP, Boulikas T (2012) Lipoplatin formulation review article. J Drug Deliv 2012:581363. doi:10.1155/2012/581363

    Article  CAS  PubMed  Google Scholar 

  100. Zheng S, Chang S, Lu J, Chen Z, Xie L, Nie Y, He B, Zou S, Gu Z (2011) Characterization of 9-nitrocamptothecin liposomes: anticancer properties and mechanisms on hepatocellular carcinoma in vitro and in vivo. PLoS One 6(6):e21064. doi:10.1371/journal.pone.0021064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tippayamontri T, Kotb R, Paquette B, Sanche L (2011) Cellular uptake and cytoplasm/DNA distribution of cisplatin and oxaliplatin and their liposomal formulation in human colorectal cancer cell HCT116. Invest New Drugs 29(6):1321–1327. doi:10.1007/s10637-010-9494-3

    Article  CAS  PubMed  Google Scholar 

  102. Koudelka S, Turanek J (2012) Liposomal paclitaxel formulations. J Control Release 163(3):322–334. doi:10.1016/j.jconrel.2012.09.006

    Article  CAS  PubMed  Google Scholar 

  103. Duncan R, Gaspar R (2011) Nanomedicine(s) under the microscope. Mol Pharm 8(6):2101–2141. doi:10.1021/mp200394t

    Article  CAS  PubMed  Google Scholar 

  104. Wittgen BP, Kunst PW, Perkins WR, Lee JK, Postmus PE (2006) Assessing a system to capture stray aerosol during inhalation of nebulized liposomal cisplatin. J Aerosol Med 19(3):385–391. doi:10.1089/jam.2006.19.385

    Article  CAS  PubMed  Google Scholar 

  105. Duffaud F, Borner M, Chollet P, Vermorken JB, Bloch J, Degardin M, Rolland F, Dittrich C, Baron B, Lacombe D, Fumoleau P (2004) Phase II study of OSI-211 (liposomal lurtotecan) in patients with metastatic or loco-regional recurrent squamous cell carcinoma of the head and neck. An EORTC New Drug Development Group study. Eur J Cancer 40(18):2748–2752. doi:10.1016/j.ejca.2004.08.024

    CAS  PubMed  Google Scholar 

  106. Gelmon K, Hirte H, Fisher B, Walsh W, Ptaszynski M, Hamilton M, Onetto N, Eisenhauer E (2004) A phase 1 study of OSI-211 given as an intravenous infusion days 1, 2, and 3 every three weeks in patients with solid cancers. Invest New Drugs 22(3):263–275. doi:10.1023/B:DRUG.0000026252.86842.e2

    Article  CAS  PubMed  Google Scholar 

  107. Booser DJ, Esteva FJ, Rivera E, Valero V, Esparza-Guerra L, Priebe W, Hortobagyi GN (2002) Phase II study of liposomal annamycin in the treatment of doxorubicin-resistant breast cancer. Cancer Chemother Pharmacol 50(1):6–8. doi:10.1007/s00280-002-0464-0

    Article  CAS  PubMed  Google Scholar 

  108. Slingerland M, Guchelaar HJ, Gelderblom H (2012) Liposomal drug formulations in cancer therapy: 15 years along the road. Drug Discov Today 17(3–4):160–166. doi:10.1016/j.drudis.2011.09.015

    Article  CAS  PubMed  Google Scholar 

  109. Deeken JF, Slack R, Weiss GJ, Ramanathan RK, Pishvaian MJ, Hwang J, Lewandowski K, Subramaniam D, He AR, Cotarla I, Rahman A, Marshall JL (2013) A phase I study of liposomal-encapsulated docetaxel (LE-DT) in patients with advanced solid tumor malignancies. Cancer Chemother Pharmacol 71(3):627–633. doi:10.1007/s00280-012-2048-y

    Article  CAS  PubMed  Google Scholar 

  110. Egusquiaguirre SP, Igartua M, Hernandez RM, Pedraz JL (2012) Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research. Clin Transl Oncol 14(2):83–93. doi:10.1007/s12094-012-0766-6

    Article  CAS  PubMed  Google Scholar 

  111. Pal A, Khan S, Wang YF, Kamath N, Sarkar AK, Ahmad A, Sheikh S, Ali S, Carbonaro D, Zhang A, Ahmad I (2005) Preclinical safety, pharmacokinetics and antitumor efficacy profile of liposome-entrapped SN-38 formulation. Anticancer Res 25(1A):331–341

    CAS  PubMed  Google Scholar 

  112. Zamboni WC, Ramalingam S, Friedland DM, Edwards RP, Stoller RG, Strychor S, Maruca L, Zamboni BA, Belani CP, Ramanathan RK (2009) Phase I and pharmacokinetic study of pegylated liposomal CKD-602 in patients with advanced malignancies. Clin Cancer Res 15(4):1466–1472. doi:10.1158/1078-0432.ccr-08-1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Neville ME, Boni LT, Pflug LE, Popescu MC, Robb RJ (2000) Biopharmaceutics of liposomal interleukin 2, oncolipin. Cytokine 12(11):1691–1701. doi:10.1006/cyto.2000.0769

    Article  CAS  PubMed  Google Scholar 

  114. Hrkach J, Von Hoff D, Mukkaram Ali M, Andrianova E, Auer J, Campbell T, De Witt D, Figa M, Figueiredo M, Horhota A, Low S, McDonnell K, Peeke E, Retnarajan B, Sabnis A, Schnipper E, Song JJ, Song YH, Summa J, Tompsett D, Troiano G, Van Geen Hoven T, Wright J, LoRusso P, Kantoff PW, Bander NH, Sweeney C, Farokhzad OC, Langer R, Zale S (2012) Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med 4(128):128ra139. doi:10.1126/scitranslmed.3003651

    Article  Google Scholar 

  115. Mamot C, Ritschard R, Wicki A, Stehle G, Dieterle T, Bubendorf L, Hilker C, Deuster S, Herrmann R, Rochlitz C (2012) Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: a phase 1 dose-escalation study. Lancet Oncol 13(12):1234–1241. doi:10.1016/s1470-2045(12)70476-x

    Article  CAS  PubMed  Google Scholar 

  116. Wickham T, Futch K (2012) A phase I study of MM-302, a HER2-targeted liposomal doxorubicin. Patients with advanced, HER2-positive breast cancer. Cancer Res 72:P5–P18

    Article  Google Scholar 

  117. Matsumura Y, Gotoh M, Muro K, Yamada Y, Shirao K, Shimada Y, Okuwa M, Matsumoto S, Miyata Y, Ohkura H, Chin K, Baba S, Yamao T, Kannami A, Takamatsu Y, Ito K, Takahashi K (2004) Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Ann Oncol 15(3):517–525

    Article  CAS  PubMed  Google Scholar 

  118. Suzuki R, Takizawa T, Kuwata Y, Mutoh M, Ishiguro N, Utoguchi N, Shinohara A, Eriguchi M, Yanagie H, Maruyama K (2008) Effective anti-tumor activity of oxaliplatin encapsulated in transferrin-PEG-liposome. Int J Pharm 346(1–2):143–150. doi:10.1016/j.ijpharm.2007.06.010

    Article  CAS  PubMed  Google Scholar 

  119. Senzer N, Nemunaitis J, Nemunaitis D, Bedell C, Edelman G, Barve M, Nunan R, Pirollo KF, Rait A, Chang EH (2013) Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol Ther 21(5):1096–1103. doi:10.1038/mt.2013.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhou J, Shum KT, Burnett JC, Rossi JJ (2013) Nanoparticle-Based Delivery of RNAi Therapeutics: progress and Challenges. Pharmaceuticals (Basel) 6(1):85–107. doi:10.3390/ph6010085

    Article  CAS  Google Scholar 

  121. Aleku M, Schulz P, Keil O, Santel A, Schaeper U, Dieckhoff B, Janke O, Endruschat J, Durieux B, Roder N, Loffler K, Lange C, Fechtner M, Mopert K, Fisch G, Dames S, Arnold W, Jochims K, Giese K, Wiedenmann B, Scholz A, Kaufmann J (2008) Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res 68(23):9788–9798. doi:10.1158/0008-5472.can-08-2428

    Article  CAS  PubMed  Google Scholar 

  122. Burnett JC, Rossi JJ, Tiemann K (2011) Current progress of siRNA/shRNA therapeutics in clinical trials. Biotechnol J 6(9):1130–1146. doi:10.1002/biot.201100054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rettig GR, Behlke MA (2012) Progress toward in vivo use of siRNAs-II. Mol Ther 20(3):483–512. doi:10.1038/mt.2011.263

    Article  CAS  PubMed  Google Scholar 

  124. Haussecker D (2012) The Business of RNAi Therapeutics in 2012. Mol Ther Nucleic Acids 1:e8. doi:10.1038/mtna.2011.9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Davis ME (2009) The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm 6(3):659–668. doi:10.1021/mp900015y

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Yari Khosroushahi.

Ethics declarations

Conflict of interest statement

The authors declare that there are no conflicts of interests.

Ethical issues

No ethical issues to be promulgated.

Additional information

Elham Ajorlou and Ahmad Yari Khosroushahi have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajorlou, E., Khosroushahi, A.Y. Trends on polymer- and lipid-based nanostructures for parenteral drug delivery to tumors. Cancer Chemother Pharmacol 79, 251–265 (2017). https://doi.org/10.1007/s00280-016-3168-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-016-3168-6

Keywords

Navigation