Skip to main content
Log in

Ultrasound plus low-level laser therapy for knee osteoarthritis rehabilitation: a randomized, placebo-controlled trial

  • Clinical Trials
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

This study evaluated the synergistic effects of ultrasound (US) and low-level laser therapy (LLLT) with or without therapeutic exercises (TE) in women with knee osteoarthritis. Forty-two Caucasian women with knee osteoarthritis were allocated into three groups: (1) the placebo group who did not perform TE, but the prototype without emitting light or ultrasonic waves was applied, (2) the US + LLLT group in which only the prototype was applied and (3) the TE + US + LLLT group that performed TE before the prototype was applied. However, 35 women completed the full clinical trial. Pressure pain thresholds (PPT) using an algometer and functional performance during the sit-to-stand test were carried out. The average PPT levels increased for US + LLLT (41 ± 9 to 54 ± 15 N, p < 0.01) and TE + US + LLLT (32 ± 8 to 45 ± 9 N, p < 0.01) groups. The number of sit-to-stands was significantly higher for all groups. However, the change between pre-treatment and post-treatment (delta value) was greater for the US + LLLT (4 ± 1) and TE + US + LLLT groups (5 ± 1) than for the placebo group (2 ± 1) with a significant intergroup difference (p < 0.05). This study showed reduced pain and increased physical functionality after 3 months of US + LLLT with and without TE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sarzi-Puttini P, Cimmino MA, Scarpa R, Caporali R, Parazzini F, Zaninelli A, Atzeni F, Canesi B (2005) Osteoarthritis: an overview of the disease and its treatment strategies. Semin Arthritis Rheum 35:1–10

    Article  CAS  PubMed  Google Scholar 

  2. McAlindon TE, Bannuru RR, Sullivan MC, Arden NK, Berenbaum F, Bierma-Zeinstra SM, Hawker GA, Henrotin Y, Hunter DJ, Kawaguchi H, Kwoh K, Lohmander S, Rannou F, Roos EM, Underwood M (2014) OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthritis Cartil 22:363–388

    Article  CAS  Google Scholar 

  3. da Rosa AS, dos Santos AF, da Silva MM, Facco GG, Perreira DM, Alves AC, Leal Junior EC, de Carvalho PT (2012) Effects of low-level laser therapy at wavelengths of 660 and 808 nm in experimental model of osteoarthritis. Photochem Photobiol 88:161–166

    Article  PubMed  Google Scholar 

  4. Pallotta RC, Bjordal JM, Frigo L, Leal Junior EC, Teixeira S, Marcos RL, Ramos L, Messias FM, Lopes-Martins RA (2012) Infrared (810-nm) low-level laser therapy on rat experimental knee inflammation. Lasers Med Sci 27:71–78

    Article  PubMed  Google Scholar 

  5. Cho HJ, Lim SC, Kim SG, Kim YS, Kang SS, Choi SH, Cho YS, Bae CS (2004) Effect of low-level laser therapy on osteoarthropathy in rabbit. In Vivo 18(5):585–591

    PubMed  Google Scholar 

  6. Ravanbod R, Torkaman G, Esteki A (2013) Comparison between pulsed ultrasound and low level laser therapy on experimental haemarthrosis. Haemophilia 19(3):420–425

    Article  CAS  PubMed  Google Scholar 

  7. Alghadir A, Omar MT, Al-Askar AB, Al-Muteri NK (2014) Effect of low-level laser therapy in patients with chronic knee osteoarthritis: a single-blinded randomized clinical study. Lasers Med Sci 29(2):749–755

    Article  PubMed  Google Scholar 

  8. Hsieh RL, Lo MT, Liao WC, Lee WC (2012) Short-term effects of 890-nanometer radiation on pain, physical activity, and postural stability in patients with knee osteoarthritis: a double-blind, randomized, placebo-controlled study. Arch Phys Med Rehabil 93(5):757–764

    Article  PubMed  Google Scholar 

  9. Hegedus B, Viharos L, Gervain M, Gálfi M (2009) The effect of low-level laser in knee osteoarthritis: a double-blind, randomized, placebo-controlled trial. Photomed Laser Surg 27:577–584

    Article  PubMed  PubMed Central  Google Scholar 

  10. Min BH, Woo JI, Cho HS, Choi BH, Park SJ, Choi MJ, Park SR (2006) Effects of low-intensity ultrasound (LIUS) stimulation on human cartilage explants. Scand J Rheumatol 35(4):305–311

    Article  PubMed  Google Scholar 

  11. Tascioglu F, Kuzgun S, Armagan O, Ogutler G (2010) Short-term effectiveness of ultrasound therapy in knee osteoarthritis. J Int Med Res 38(4):1233–1242

    Article  CAS  PubMed  Google Scholar 

  12. Sánchez AL, Wakamatzu MAR, Zamudio JV, Casasola J, Cuevas CH, González AR, Tapia JG (2009) Effect of low-intensity pulsed ultrasound on regeneration of joint cartilage in patients with second and third degree osteoarthritis of the knee. Reumatol Clin 5(4):163–167

    Article  Google Scholar 

  13. Kozanoglu E, Basaran S, Guzel R, Guler-Uysal F (2003) Short term efficacy of ibuprofen phonophoresis versus continuous ultrasound therapy in knee osteoarthritis. Swiss Med Wkly 133(23–24):333–338

    CAS  PubMed  Google Scholar 

  14. Hanif S, Salim AR, Lamina S, Isa UL (2010) Comparison of the effect of laser therapy and therapeutic ultrasound in the management of chronic osteoarthritic knee pain: a randomised controlled trail. Niger J Med Rehabil (NJMR) 15(23):1–5

    Google Scholar 

  15. Fransen M, Mcconnell S (2008) Exercise for osteoarthritis of the knee. Cochrane Database Syst Rev 4(4):1–93

    Google Scholar 

  16. Kheshie AR, Alayat MS, Ali MM (2014) High-intensity versus low-level laser therapy in the treatment of patients with knee osteoarthritis: a randomized controlled trial. Lasers Med Sci 29(4):1371–1376

    Article  PubMed  Google Scholar 

  17. Ungur R, Ciortea V, Onac I, Mocan T, Irsay L, Dronca M, Suciu S, Borda IM (2014) Clinical effects of multimodal therapy in patients with knee osteoarthritis. Palestrica Third millenn Civ Sport 15:22–25

    Google Scholar 

  18. Rayegani SM, Bahrami MH, Elyaspour D, Saeidi M, Sanjari H (2012) Therapeutic effects of low level laser therapy (LLLT) in knee osteoarthritis compared to therapeutic ultrasound. J Lasers Med Sci 3(2):71–74

    Google Scholar 

  19. Alfredo PP, Bjordal JM, Dreyer SH, Meneses SR, Zaguetti G, Ovanessian V, Fukuda TY, Junior WS, Lopes Martins RA, Casarotto RA, Marques AP (2012) Efficacy of low level laser therapy associated with exercises in knee osteoarthritis: a randomized double-blind study. Clin Rehabil 26(6):523–533

    Article  PubMed  Google Scholar 

  20. Gur A, Cosut A, Sarac AJ, Cevik R, Nas K, Uyar A (2003) Efficacy of different therapy regimes of low-power laser in painful osteoarthritis of the knee: a double-blind and randomized-controlled trial. Lasers Surg Med 33(5):330–338

    Article  PubMed  Google Scholar 

  21. Akinbo S, Owoeye O, Adesegun S (2011) Comparison of the therapeutic efficacy of diclofenac sodium and methyl salicylate phonophoresis in the management of knee osteoarthritis. Turk J Rheumatol 26(2):111–119

    Article  Google Scholar 

  22. Paolillo AR, Paolillo FR, João JP, João HA, Bagnato VS (2015) Synergic effects of ultrasound and laser on the pain relief in women with hand osteoarthritis. Lasers Med Sci 30:279–286

    Article  PubMed  Google Scholar 

  23. Calis HT, Berberoglu N, Calis M (2011) Are ultrasound, laser and exercise superior to each other in the treatment of subacromial impingement syndrome? A randomized clinical trial. Eur J Phys Rehabil Med 47(3):375–380

    CAS  PubMed  Google Scholar 

  24. Montes-Molina R, Madroñero-Agreda MA, Romojaro-Rodríguez AB, Gallego-Mendez V, Prados-Cabiedas C, Marques-Lucas C, Pérez-Ferreiro M, Martinez-Ruiz F (2009) Efficacy of interferential low-level laser therapy using two independent sources in the treatment of knee pain. Photomed Laser Surg 27(3):467–471

    Article  PubMed  Google Scholar 

  25. Assis L, Milares LP, Almeida T, Tim C, Magri A, Fernandes KR, Medalha C, Renno AC (2016) Aerobic exercise training and low-level laser therapy modulate inflammatory response and degenerative process in an experimental model of knee osteoarthritis in rats. Osteoarthritis Cartil 24:169–177

    Article  CAS  Google Scholar 

  26. Leal-Junior EC, Vanin AA, Miranda EF, Carvalho PT, Dal Corso S, Bjordal JM (2015) Effect of phototherapy (low level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. Lasers Med Sci 30(2):925–939

    Article  PubMed  Google Scholar 

  27. Borsa PA, Larkinm KA, True JM (2013) Does phototherapy enhance skeletal muscle contractile function and postexercise recovery? A systematic review. J Athl Train 48:57–67

    Article  PubMed  PubMed Central  Google Scholar 

  28. Huang MH, Lin YS, Lee CL (2005) Use of ultrasound to increase effectiveness of isokinetic exercise for knee osteoarthritis. Arch Phys Med Rehabil 86:1545–1551

    Article  PubMed  Google Scholar 

  29. Ulus Y, Tander B, Akyol Y, Durmus D, Buyukakincak O, Gul U, Canturk F, Bilgici A, Kuru O (2012) Therapeutic ultrasound versus sham ultrasound for the management of patients with knee osteoarthritis: a randomized double-blind controlled clinical study. Int J Rheum Dis 15(2):197–206

    Article  PubMed  Google Scholar 

  30. Weaver SL, Demchak TJ, Stone MB, Brucker JB, Burr PO (2006) Effect of transducer velocity on intramuscular temperature during a 1-MHz ultrasound treatment. J Orthop Sports Phys Ther 36(5):320–325

    Article  PubMed  Google Scholar 

  31. Arendt-Nielsen L, Nie H, Laursen MB, Laursen BS, Madeleine P, Simonsen OH, Graven-Nielsen T (2010) Sensitization in patients with painful knee osteoarthritis. Pain 149(3):573–581

    Article  PubMed  Google Scholar 

  32. Fernández-de-Las-Peñas C, Madeleine P, Martínez-Perez A, Arendt-Nielsen L, Jiménez-García R, Pareja JA (2010) Pressure pain sensitivity topographical maps reveal bilateral hyperalgesia of the hands in patients with unilateral carpal tunnel syndrome. Arthritis Care Res (Hoboken) 62(8):1055–1064

    Article  Google Scholar 

  33. Schwenk M, Gogulla S, Englert S, Czempik A, Hauer K (2012) Test–retest reliability and minimal detectable change of repeated sit-to-stand analysis using one body fixed sensor in geriatric patients. Physiol Meas 33(11):1931–1946

    Article  CAS  PubMed  Google Scholar 

  34. Bohannon RW (1995) Sit-to-stand test for measuring performance of lower extremity muscles. Percept Mot Skills 80:163–166

    Article  CAS  PubMed  Google Scholar 

  35. Huang MH, Yang RC, Lee CL, Chen TW, Wang MC (2005) Preliminary results of integrated therapy for patients with knee osteoarthritis. Arthritis Rheum 53(6):812–820

    Article  PubMed  Google Scholar 

  36. Cambier D, D’Herde K, Witvrouw E, Beck M, Soenens S, Vanderstraeten G (2001) Therapeutic ultrasound: temperature increase at different depths by different modes in a human cadaver. J Rehabil Med 33(5):212–215

    Article  CAS  PubMed  Google Scholar 

  37. Drape DO, Sunderland S, Kirkendall DT, Ricard M (1993) A comparison of temperature rise in human calf muscles following applications of underwater and topical gel ultrasound. J Orthop Sports Phys Ther 17(5):247–251

    Article  Google Scholar 

  38. Moore JH, Gieck JH, Ball DW, Perrin DH, Saliba EN, McCue FC (2004) The biophysical effects of ultrasound on median nerve distal latencies. Electromyogr Clin Neurophysiol 40:169–180

    Google Scholar 

  39. Kramer JF (1984) Ultrasound: evaluation of its mechanical and thermal effects. Arch Phys Med Rehabil 65(5):223–227

    CAS  PubMed  Google Scholar 

  40. Holdcroft A, Jaggar S (2005) Core topics in pain. Cambridge University Press, Cambridge

    Book  Google Scholar 

  41. Hagiwara S, Iwasaka H, Okuda K, Noguchi T (2007) GaAlAs (830 nm) low-level laser enhances peripheral endogenous opioid analgesia in rats. Lasers Surg Med 39(10):797–802

    Article  PubMed  Google Scholar 

  42. Srbely JZ, Dickey JP, Lowerison M, Edwards AM, Nolet PS, Wong LL (2009) Stimulation of myofascial trigger points with ultrasound induces segmental antinociceptive effects: a randomized controlled study. Pain 139:260–266

    Article  Google Scholar 

  43. Alves ACA, de Paula VR, Leal-Junior ECP, dos Santos SA, Ligeiro AP, Albertini R, Silva Junior JA, de Carvalho PDTC (2013) Effect of low-level laser therapy on the expression of inflammatory mediators and on neutrophils and macrophages in acute joint inflammation. Arthritis Res Ther 15:R116

    Article  PubMed  PubMed Central  Google Scholar 

  44. Guo H, Luo Q, Zhang J, Lin H, Xia L, He C (2011) Comparing different physical factors on serum TNF-α levels, chondrocyte apoptosis, caspase-3 and caspase-8 expression in osteoarthritis of the knee in rabbits. Jt Bone Spine 78(6):604–610

    Article  CAS  Google Scholar 

  45. Maki BE, McIlroy WE (2006) Control of rapid limb movements for balance recovery: age-related changes and implications for fall prevention. Age Ageing 2(35):ii12–ii18

    Article  Google Scholar 

  46. Vander Linden DW, Brunt D, McCulloch MU (1994) Variant and invariant characteristics of the sit-to-stand task in healthy elderly adults. Arch Phys Med Rehabil 75(6):653–660

    Article  CAS  PubMed  Google Scholar 

  47. Janssen WG, Bussmann HB, Stam HJ (2002) Determinants of the sit-to-stand movement: a review. Phys Ther 82(9):866–879

    PubMed  Google Scholar 

  48. Srbely JZ (2008) Ultrasound in the management of osteoarthritis: part I: a review of the current literature. J Can Chiropr Assoc 52:30–37

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)—Grant nos. 2013/07276-1 and 2013/14001-9. We also acknowledge the MM Optics and the Technological Support Laboratory (LAT) of the Optics Group from the Physics Institute of São Carlos (IFSC), University of São Paulo (USP) for development of the prototype.

Funding

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)—Grant nos. 2013/07276-1 and 2013/14001-9.

Author information

Authors and Affiliations

Authors

Contributions

FRP, ARP and VSB, conception and design of research; JPJ, DF and HJ performed experiments; FRP, MD and VSB analyzed data, interpreted results of experiments, FRP, ARP and VSB drafted manuscript; FRP and ARP edited and revised manuscript; FRP, ARP, JPJ, DF, MD, HJ and VSB approved the final version of the manuscript.

Corresponding author

Correspondence to Fernanda Rossi Paolillo.

Ethics declarations

Conflict of interest

Fernanda Rossi Paolillo, Alessandra Rossi Paolillo, Jessica Patrícia João, Daniele Frascá, Marcelo Duchêne, Herbert Alexandre João and Vanderlei Salvador Bagnato declare that they have no conflict of interest.

Ethical approval

This research was approved by the National Ethics Committee (approval no. 362.789) and the Federal University of São Carlos Ethics Committee (approval no. 143.392) in Brazil. The present study is registered with ClinicalTrials.gov, number NCT02154893. All subjects provided written informed consents before enrollment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paolillo, F.R., Paolillo, A.R., João, J.P. et al. Ultrasound plus low-level laser therapy for knee osteoarthritis rehabilitation: a randomized, placebo-controlled trial. Rheumatol Int 38, 785–793 (2018). https://doi.org/10.1007/s00296-018-4000-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-018-4000-x

Keywords

Navigation