Skip to main content
Log in

Pax3 mRNA is decreased in the hearts of rats with experimental diaphragmatic hernia

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Rats with nitrofen-induced congenital diaphragmatic hernia (CDH) have heart hypoplasia and cardiovascular malformations. The mechanism of action of nitrofen involves changes in neural crest signaling. Pax3 function is required for cardiac neural crest cells to complete their migration to the developing heart. The aim of this study was to examine whether Pax3 expression is changed at two gestational endpoints in rat embryos or fetuses exposed to nitrofen. On day E9.5 of gestation, pregnant rats received either 100 mg of nitrofen (n=10) or vehicle alone (control, n=10). The fetuses were recovered on E15 or E21. Their hearts were dissected out and weighed. Pax3 mRNA expression was determined by real-time polymerase chain reaction. We used two-tailed Student’s t-tests to compare groups, with a threshold of significance of p<0.05. Compared with controls, nitrofen-exposed fetuses had heart hypoplasia in terms of heart/body weight ratio (0.62±0.10% vs. 0.77±0.17%, p<0.05). Pax3 mRNA expression in the heart was significantly decreased on E15 in nitrofen-treated embryos (32.94±17.11 U  vs. 55.09±11.56 U, p<0.05), and it was still decreased, although not significantly, in the hearts of nitrofen-exposed fetuses recovered on E21 (15.67±5.56 U vs. 20.51±5.92 U, not significant). In conclusion, Pax3 is underexpressed in the hearts of nitrofen-exposed embryonal rats before the end of gestation. The mechanism of action of Pax3 should be further investigated because it could be one of the targets for future prenatal transplacental intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alfonso LF, Vilanova J, Aldazabal P, Lopez de Torre B, Tovar JA (1993) Lung growth and maturation in the rat model of experimentally induced congenital diaphragmatic hernia. Eur J Pediatr Surg 3:6–11

    Google Scholar 

  2. Basch ML, Garcia-Castro MI, Bronner-Fraser M (2004) Molecular mechanisms of neural crest induction. Birth Defects Res Part C Embryo Today 72:109–123

    CAS  PubMed  Google Scholar 

  3. Baumgart S, Paul JJ, Huhta JC, Katz AL, Paul KE, Spettell C, Spitzer AR (1998) Cardiac malposition, redistribution of fetal cardiac output, and left heart hypoplasia reduce survival in neonates with congenital diaphragmatic hernia requiring extracorporeal membrane oxygenation. J Pediatr 133:57–62

    Google Scholar 

  4. Conway SJ, Godt RE, Hatcher CJ, Leatherbury L, Zolotouchnikov VV, Brotto MA, Copp AJ, et al. (1997) Neural crest is involved in development of abnormal myocardial function. J Mol Cell Cardiol 29:2675–2685

    CAS  PubMed  Google Scholar 

  5. Copp AJ, Brook FA, Estibeiro JP, Shum AS, Cockroft DL (1990) The embryonic development of mammalian neural tube defects. Prog Neurobiol 35:363–403

    CAS  PubMed  Google Scholar 

  6. Costlow RD, Manson JM (1981) The heart and diaphragm: target organs in the neonatal death induced by nitrofen (2,4-dichlorophenyl-p-nitrophenyl ether). Toxicology 20:209–227

    CAS  PubMed  Google Scholar 

  7. Creazzo TL, Godt RE, Leatherbury L, Conway SJ, Kirby ML (1998) Role of cardiac neural crest cells in cardiovascular development. Annu Rev Physiol 60:267–286

    CAS  PubMed  Google Scholar 

  8. Chan WY, Cheung CS, Yung KM, Copp AJ (2004) Cardiac neural crest of the mouse embryo: axial level of origin, migratory pathway and cell autonomy of the splotch (Sp2H) mutant effect. Development 131:3367–3379

    CAS  PubMed  Google Scholar 

  9. Dickinson DP, Machnicki M, Ali MM, Zhang Z, Sohal GS (2004) Ventrally emigrating neural tube (VENT) cells: a second neural tube-derived cell population. J Anat 205:79–98

    PubMed  Google Scholar 

  10. Dupe V, Ghyselinck NB, Wendling O, Chambon P, Mark M (1999) Key roles of retinoic acid receptors alpha and beta in the patterning of the caudal hindbrain, pharyngeal arches and otocyst in the mouse. Development 126:5051–5059

    CAS  PubMed  Google Scholar 

  11. Firulli AB, Conway SJ (2004) Combinatorial transcriptional interaction within the cardiac neural crest: a pair of HANDs in heart formation. Birth Defects Res Part C Embryo Today 72:151–161

    CAS  PubMed  Google Scholar 

  12. Gonzalez-Reyes S, Alvarez L, Diez-Pardo JA, Tovar JA (2003) Prenatal vitamin E improves lung and heart hypoplasia in experimental diaphargamatic hernia. Pediatr Surg Int 19:331–334

    Google Scholar 

  13. Goulding MD, Chalepakis G, Deutsch U, Erselius JR, Gruss P (1991) Pax-3, a novel murine DNA binding protein expressed during early neurogenesis. EMBO J 10:1135–1147

    CAS  PubMed  Google Scholar 

  14. Harris RG, White E, Phillips ES, Lillycrop KA (2002) The expression of the developmentally regulated proto-oncogene Pax-3 is modulated by N-Myc. J Biol Chem 277:34815–34825

    CAS  PubMed  Google Scholar 

  15. Iritani I (1984) Experimental study on embryogenesis of congenital diaphragmatic hernia. Anat Embryol (Berl) 169:133–139

    CAS  Google Scholar 

  16. Karamanoukian HL, O’Toole SJ, Rossman JR, Sharma A, Holm BA, Azizkhan RG, Glick PL (1996) Can cardiac weight predict lung weight in patients with congenital diaphragmatic hernia? J Pediatr Surg 31:823–825

    Google Scholar 

  17. Kirby ML, Waldo KL (1995) Neural crest and cardiovascular patterning. Circ Res 77:211–215

    CAS  PubMed  Google Scholar 

  18. Kluth D, Kangah R, Reich P, Tenbrinck R, Tibboel D, Lambrecht W (1990) Nitrofen-induced diaphragmatic hernias in rats: an animal model. J Pediatr Surg 25:850–854

    Google Scholar 

  19. Kwang SJ, Brugger SM, Lazik A, Merrill AE, Wu LY, Liu YH, Ishii M, et al. (2002) Msx2 is an immediate downstream effector of Pax3 in the development of the murine cardiac neural crest. Development 129:527–538

    CAS  PubMed  Google Scholar 

  20. Le Douarin N, Kalcheim C (1999) The neural crest, 2nd edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  21. Li J, Liu KC, Jin F, Lu MM, Epstein JA (1999) Transgenic rescue of congenital heart disease and spina bifida in Splotch mice. Development 126:2495–2503

    CAS  PubMed  Google Scholar 

  22. Losty PD, Connell MG, Freese R, Laval S, Okoye BO, Smith A, Kluth D, et al. (1999) Cardiovascular malformations in experimental congenital diaphragmatic hernia. J Pediatr Surg 34:1203–1207

    Google Scholar 

  23. Maschhoff KL, Baldwin HS (2000) Molecular determinants of neural crest migration. Am J Med Genet 97:280–288

    CAS  PubMed  Google Scholar 

  24. Migliazza L, Otten C, Xia H, Rodriguez JI, Diez-Pardo JA, Tovar JA (1999) Cardiovascular malformations in congenital diaphragmatic hernia: human and experimental studies. J Pediatr Surg 34:1352–1358

    Article  CAS  PubMed  Google Scholar 

  25. Migliazza L, Xia H, Alvarez JI, Arnaiz A, Diez-Pardo JA, Alfonso LF, Tovar JA (1999) Heart hypoplasia in experimental congenital diaphragmatic hernia. J Pediatr Surg 34:706–710

    Google Scholar 

  26. Miyagawa-Tomita S, Waldo K, Tomita H, Kirby ML (1991) Temporospatial study of the migration and distribution of cardiac neural crest in quail-chick chimeras. Am J Anat 192:79–88

    CAS  PubMed  Google Scholar 

  27. Momma K, Ando M, Mori Y, Ito T (1992) Hypoplasia of the lung and heart in fetal rats with diaphragmatic hernia. Fetal Diag Ther 7:46–52

    CAS  Google Scholar 

  28. Pani L, Horal M, Loeken MR (2002) Rescue of neural tube defects in Pax-3-deficient embryos by p53 loss of function: implications for Pax-3- dependent development and tumorigenesis. Genes Dev 16:676–680

    CAS  PubMed  Google Scholar 

  29. Phelan SA, Ito M, Loeken MR (1997) Neural tube defects in embryos of diabetic mice: role of the Pax-3 gene and apoptosis. Diabetes 46:1189–1197

    CAS  PubMed  Google Scholar 

  30. Schafer K, Neuhaus P, Kruse J, Braun T (2003) The homeobox gene Lbx1 specifies a subpopulation of cardiac neural crest necessary for normal heart development. Circ Res 92:73–80

    PubMed  Google Scholar 

  31. Schwartz SM, Vermilion RP, Hirschl RB (1994) Evaluation of left ventricular mass in children with left-sided congenital diaphragmatic hernia. J Pediatr 125:447–451

    Google Scholar 

  32. Siebert JR, Haas JE, Beckwith JB (1984) Left ventricular hypoplasia in congenital diaphragmatic hernia. J Pediatr Surg 19:567–571

    Google Scholar 

  33. Strachan T, Read AP (1994) PAX genes. Curr Opin Genet Dev 4:427–38

    CAS  PubMed  Google Scholar 

  34. Tenbrinck R, Tibboel D, Gaillard JL, Kluth D, Bos AP, Lachmann B, Molenaar JC (1990) Experimentally induced congenital diaphragmatic hernia in rats. J Pediatr Surg 25:426–429

    Google Scholar 

  35. Weston JA (1970) The migration and differentiation of neural crest cells. Adv Morphog 8:41–114

    CAS  PubMed  Google Scholar 

  36. Yu J, Gonzalez S, Diez-Pardo JA, Tovar JA (2002) Effects of vitamin A on malformations of neural-crest-controlled organs induced by nitrofen in rats. Pediatr Surg Int 18:600–605

    Google Scholar 

  37. Yu J, Gonzalez S, Rodriguez JI, Diez-Pardo JA, Tovar JA (2001) Neural crest-derived defects in experimental congenital diaphragmatic hernia. Pediatr Surg Int 17:294–298

    Google Scholar 

Download references

Acknowledgments

This work was supported by FIS (Fondo de Investigación Sanitaria, Spain) Grant 02/1220 and by the HULP Research Committee

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JA Tovar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez-Reyes, S., Fernandez-Dumont, V., Martinez-Calonge, W. et al. Pax3 mRNA is decreased in the hearts of rats with experimental diaphragmatic hernia. Ped Surgery Int 21, 203–207 (2005). https://doi.org/10.1007/s00383-004-1320-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-004-1320-6

Keywords

Navigation