Skip to main content
Log in

On partial contraction analysis for coupled nonlinear oscillators

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We describe a simple yet general method to analyze networks of coupled identical nonlinear oscillators and study applications to fast synchronization, locomotion, and schooling. Specifically, we use nonlinear contraction theory to derive exact and global (rather than linearized) results on synchronization, antisynchronization, and oscillator death. The method can be applied to coupled networks of various structures and arbitrary size. For oscillators with positive definite diffusion coupling, it can be shown that synchronization always occurs globally for strong enough coupling strengths, and an explicit upper bound on the corresponding threshold can be computed through eigenvalue analysis. The discussion also extends to the case when network structure varies abruptly and asynchronously, as in “flocks” of oscillators or dynamic elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aronson DG, Ermentrout GB, Kopell N (1990) Amplitude response of coupled oscillators. Physica D 41:403–449

    Google Scholar 

  2. Bar-Eli K (1985) On the stability of coupled chemical oscillators. Physica D 14:242–252

    Google Scholar 

  3. Barahona M, Pecora LM (2002) Synchronization in small-world systems. Phys Rev Lett 89(5):054101

    Google Scholar 

  4. Bay John S, Hemami H (1987) Modeling of a neural pattern generator with coupled nonlinear oscillators. IEEE Trans Biomed Eng 34(4):297–306

    Google Scholar 

  5. Bressloff PC, Coombes S, Souza B de (1997) Dynamics of a ring of pulse-coupled oscillators: group theoretic approach. Phys Rev Lett 79(15):2791–2794

    Google Scholar 

  6. Brody CD, Hopfield JJ (2003) Simple networks for spike-timing-based computation, with application to olfactory processing. Neuron 37:843–852

    Google Scholar 

  7. Bruckstein AM, Mallows CL, Wagner IA (1997) Cooperative cleaners: a study in ant-robotics. Am Math Monthly 104(4):323–343

    Google Scholar 

  8. Chakraborty T, Rand RH (1988) The transition from phase locking to drift in a system of two weakly coupled Van der Pol oscillators. Int J Nonlin Mech 23:369–376

    Google Scholar 

  9. Chua LO (1998) CNN: a paradigm for complexity. World Scientific, Hong Kong

  10. Collins JJ, Stewart IN (1993a) Coupled nonlinear oscillators and the symmetries of animal gaits. J Nonlin Sci 3:349–392

    Google Scholar 

  11. Collins JJ, Stewart IN (1993b) Hexapodal gaits and coupled nonlinear oscillator models. Biol Cybern 68:287–298

    Google Scholar 

  12. Combescot C, Slotine JJE (2000) A study of coupled oscillators. MIT Nonlinear Systems Laboratory, Report MIT-NSL-000801

  13. Coombes S (2001) Phase-locking in networks of pulse-coupled McKean relaxation oscillators. Physica D 160(3–4):173–188

    Google Scholar 

  14. Cutts C, Speakman J (1994) Energy savings in formation flight of pink-footed geese. J Exp Biol 189:251–261

    Google Scholar 

  15. Dragoi V, Grosu I (1998) Synchronization of locally coupled neural oscillators. Neural Process Lett 7(2):199–210

    Google Scholar 

  16. Fiedler M (1973) Algebraic connectivity of graphs. Czechoslovak Math J 23(98):298–305

    Google Scholar 

  17. FitzHugh RA (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1:445–466

    Google Scholar 

  18. Godsil C, Royle G (2001) Algebraic graph theory. Springer, Berlin Heidelberg New York

  19. Golubitsky M, Stewart I, Buono PL, Collins JJ (1998) A modular network for legged locomotion. Physica D 115:56–72

    Google Scholar 

  20. Golubitsky M, Stewart I, Buono PL, Collins JJ (1999) The role of symmetry in locomotor central pattern generators and animal gaits. Nature 401: 693–695

    Google Scholar 

  21. Golubitsky M, Stewart I (2002) Patterns of oscillation in coupled cell systems. Geometry dynamics and mechanics: 60th birthday volume for J.E. Marsden. Springer, Berlin Heidelberg New York, pp 243–286

  22. Hahnloser RH, Seung HS, Slotine JJE (2003) Permitted and forbidden sets in symmetric threshold-linear networks. Neural Comput 15:621–638

    Google Scholar 

  23. Hirsch M, Smale S (1974) Differential equations, dynamical systems, and linear algebra. Academic, New York

  24. Hopfield JJ, Brody CD (2001) What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration. Proc Natl Acad Sci USA 98:1282–1287

    Google Scholar 

  25. Horn RA, Johnson CR (1985) Matrix analysis. Cambridge University Press, Cambridge, UK

  26. Horn RA, Johnson CR (1989) Topics in matrix analysis. Cambridge University Press, Cambridge, UK

  27. Jadbabaie A, Lin J, Morse AS (2003) Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans Automat Control 48(6):988–1001

    Google Scholar 

  28. Ketterle W (2002) When atoms behave as waves: Bose-Eintein condensation and the atom laser. Rev Mod Phys 74:1131–1151

    Google Scholar 

  29. Kopell N, Ermentrout GB (1986) Symmetry and phase-locking in chains of weakly coupled oscillators. Commun Pure Appl Math 39:623–660

    Google Scholar 

  30. Kopell N, Somers DC (1995) Anti-phase solutions in relaxation oscillators coupled through excitatory interactions. J Math Biol 33:261–280

    Google Scholar 

  31. Kopell N (2000) We got rhythm: dynamical systems of the nervous system. (published version of the 1998 Gibbs lecture of the AMS) 47:6–16

  32. Krishnaprasad PS, Tsakiris D (2001) Oscillations, SE(2)-snakes and motion control: a study of the roller racer. Dynam Stabil Syst 16(4):347–397

    Google Scholar 

  33. Kuramoto Y (1984) Chemical oscillations, wave, and turbulence. Springer, Berlin Heidelberg New York

  34. Langbort C, D’Andrea R (2004) Distributed control of spatially reversible interconnected systems with boundary conditions. SIAM J Control Optimizat (in press)

  35. Latham PE, Deneve S, Pouget A (2003) Optimal computation with attractor networks. J Physiol Paris 97:683–694

    Google Scholar 

  36. Leonard NE, Fiorelli E (2001) Virtual leaders, artificial potentials and coordinated control of groups. In: 40th IEEE conference on decision and control

  37. Lin Z, Broucke M, Francis B (2004) Local control strategies for groups of mobile autonomous agents. IEEE Trans Automat Control 49(4):622–629

    Google Scholar 

  38. Loewenstein Y, Sompolinsky H (2002) Oscillations by symmetry breaking in homogeneous networks with electrical coupling. Phys Rev E 65:1–11

    Google Scholar 

  39. Lohmiller W (1999) Contraction analysis of nonlinear systems. PhD thesis, Department of Mechanical Engineering, MIT, Cambridge, MA

  40. Lohmiller W, Slotine JJE (1998) On contraction analysis for nonlinear systems. Automatica 34(6):683–696

    Google Scholar 

  41. Lohmiller W, Slotine JJE (2000) Control system design for mechanical systems using contraction theory. IEEE Trans Automat Control 45(5):984–989

    Google Scholar 

  42. Lohmiller W, Slotine JJE (2000) Nonlinear process control using contraction theory. AIChE J 46(3):588–596

    Google Scholar 

  43. Manor Y, Nadim F, Ritt J, Epstein S, Marder, E, Kopell N (1999) Network oscillations generated by balancing asymmetric inhibition in passive neurons. J Neurosci 19:2765–2779

    Google Scholar 

  44. May RM, Gupta S, McLean AR (2001) Infectious disease dynamics: what characterizes a successful invader? Phil Trans R Soc Lond B 356:901–910

    Google Scholar 

  45. Micchelli CA (1986) Interpolation of scattered data. Construct Approximat 2:11–22

    Google Scholar 

  46. Mirollo RE, Strogatz SH (1990) Synchronization of pulse-coupled biological oscillators. SIAM J Appl Math 50:1645–1662

    Google Scholar 

  47. Mohar B (1991) Eigenvalues, diameter, and mean distance in graphs. Graphs Combinator 7:53–64

    Google Scholar 

  48. Murray JD (1993) Mathematical biology. Springer, Berlin Heidelberg New York

  49. Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulating nerve axon. Proc Inst Radio Eng 50:2061–2070

    Google Scholar 

  50. Neuenschwander S, Castelo-Branco M, Baron J, Singer W (2002) Feed-forward synchronization: propagation of temporal patterns along the retinothalamocortical pathway. Philos Trans Biol Sci 357(1428):1869–1876

    Google Scholar 

  51. Olfati-Saber R, Murray RM (2003) Agreement problems in networks with directed graphs and switching topology. In: IEEE conference on decision and control

  52. Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys Rev Lett 64:821–824

    Google Scholar 

  53. Pecora LM (1998) Synchronization conditions and desynchronizing patterns in coupled limit-cycle and chaotic systems. Phys Rev E 64(8):821–824

    Google Scholar 

  54. Pecora LM, Carroll TL (1998) Master stability functions for synchronized coupled systems. Phys Rev Lett 80(10):2109–2112

    Google Scholar 

  55. Pikovsky A, Rosenblum M, Kurths J (2003) Synchronization: a universal concept in nonlinear sciences. Cambridge University Press, Cambridge, UK

  56. Pogromsky A, Santoboni G, Nijmeijer H (2002) Partial synchronization: from symmetry towards stability. Physica D 172:65–87

    Google Scholar 

  57. Rand RH, Holmes PJ (1980) Bifurcation of periodic motions in two weakly coupled van der pol oscillators. Int J Nonlin Mech 15:387–399

    Google Scholar 

  58. Ravasz ZNE, Vicsek T, Brechet T, Barabási AL (2000) Physics of the rhythmic applause. Phys Rev E 61(6):6987–6992

    Google Scholar 

  59. Reddy DVR, Sen A, Johnston GL (1998) Time delay induced death in coupled limit cycle oscillators. Phys Rev Lett 80(23):5109–5112

    Google Scholar 

  60. Reynolds C (1987) Flocks, birds, and schools: a distributed behavioral model. Comput Graph 21:25–34

    Google Scholar 

  61. Rock I, Palmer S (1990) The legacy of gestalt psychology. Sci Am 263:84–90

    Google Scholar 

  62. Seiler P, Pant A, Hedrick JK (2003) A systems interpretation for observations of bird V-formations. J Theor Biol 221:279–287

    Google Scholar 

  63. Seung HS (1998) Continuous attractors and oculomotor control. Neural Netw 11:1253–1258

    Google Scholar 

  64. Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations. Neuron 24:49–65

    Google Scholar 

  65. Slotine JJE, Li W (1991) Applied nonlinear control. Prentice-Hall, Englewood Cliffs, NJ

  66. Slotine JJE, Lohmiller W (2001) Modularity, evolution, and the binding problem: a view from stability theory. Neural Netw 14(2):137–145

    Google Scholar 

  67. Slotine JJE (2003) Modular stability tools for distributed computation and control. Int J Adapt Control Signal Process 17(6):397–416

    Google Scholar 

  68. Slotine JJE, Wang W (2004) A study of synchronization and group cooperation using partial contraction theory. In: Morse S, Leonard N, Kumar V (eds) Proceedings of Block Island workshop on cooperative control. Lecture notes in control and information science, vol 309. Springer, Berlin Heidelberg New York

  69. Smale S (1976) A mathematical model of two cells via Turing’s equation. In: The Hopf bifurcation and its applications. Springer, Berlin Heidelberg New York, pp 354–367

  70. Somers DC, Kopell N (1993) Rapid synchronization through fast threshold modulation. Biol Cybern 68:393–407

    Google Scholar 

  71. Somers DC, Kopell N (1995) Waves and synchrony in networks of oscillators of relaxation and non-relaxation type. Physica D 89(1–2):169–183

    Google Scholar 

  72. Storti DW, Rand RH (1982) Dynamics of two strongly coupled Van der Pol oscillators. Int J Nonlin Mech 17:143–152

    Google Scholar 

  73. Strogatz SH, Stewart I (1993) Coupled oscillators and biological synchronization. Sci Am 269(6):102–109

    Google Scholar 

  74. Strogatz SH (1994) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Addison-Wesley, Reading, MA

  75. Strogatz SH (2000) From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys D Nonlin Phenom 143:1–4

    Google Scholar 

  76. Strogatz SH (2001) Exploring complex networks. Nature 410:268–276

    Google Scholar 

  77. Strogatz S (2003) Sync: the emerging science of spontaneous order. Hyperion, New York

  78. Tanner H, Jadbabaie A, Pappas GJ (2003a) Stable flocking of mobile agents, Part I: Fixed topology; Part II: Dynamic topology. In: IEEE conference on decision and control, Maui

  79. Tanner H, Jadbabaie A, Pappas GJ (2003b) Coordination of multiple autonomous vehicles. In: IEEE Mediterranean conference on control and automation, Rhodes, Greece

  80. Turing A (1952) The chemical basis of morphogenesis. Philos Trans R Soc B 237(641):37–72

    Google Scholar 

  81. Vicsek T, Czirok A, Jacob EB, Cohen I, Schochet O (1995) Novel type of phase transitions in a system of self-driven particles. Phys Rev Lett 75:1226–1229

    Google Scholar 

  82. Wang W, Slotine JJE (2004) A study of continuous attractors and singularly perturbed systems using contraction theory. MIT Nonlinear Systems Laboratory Report 010804, Cambridge, MA

  83. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘Small-World’ networks. Nature 393:440–442

    Google Scholar 

  84. Watts DJ (1999) Small Worlds. Princeton University Press, Princeton, NJ

  85. Winfree AT (1967) Biological rhythms and the behavior of populations of coupled oscillators. J Theor Biol 16:15–42

    Google Scholar 

  86. Winfree AT (2000) The geometry of biological time. Springer, Berlin Heidelberg New York

  87. Wolf JA, Schroeder LF, Finkel LH (2001) Computational modeling of medium spiny projection neurons in nucleus accumbens: toward the cellular mechanisms of afferent stream integration. Proc IEEE 89(7):1083–1092

    Google Scholar 

  88. Yen SC, Menschik ED, Finkel LH (1999) Perceptual grouping in striate cortical networks mediated by synchronization and desynchronization. Neurocomputing 26(7):609– 616

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Jacques E. Slotine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Slotine, JJ. On partial contraction analysis for coupled nonlinear oscillators. Biol Cybern 92, 38–53 (2005). https://doi.org/10.1007/s00422-004-0527-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-004-0527-x

Keywords

Navigation