Skip to main content
Log in

Zebrafish twist1 is expressed in craniofacial, vertebral, and renal precursors

  • Short Communication
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

TWIST1 encodes a transcription factor that contains a highly conserved basic helix–loop–helix DNA-binding domain and a WR motif. We have isolated a full-length complementary DNA of the zebrafish ortholog of TWIST1 and determined its genomic organization. Inter-species comparisons reveal a remarkable degree of conservation at the gene structure, nucleotide, and predicted peptide levels across large evolutionary distances. Using reverse-transcription polymerase chain reaction analysis and in situ hybridization analyses of whole mount and cryosectioned zebrafish embryos, we detected maternal twist1 transcript in the zygote. During somitogenesis, twist1 transcripts were detected in the intermediate mesoderm from the 2-somite to 18-somite stages, followed by expression in the somites from the 5-somite stage to the 24-somite stage. Also, beginning at the two-somite stage, twist1 expression was observed in head mesenchyme and, subsequently, in neural crest-derived pharyngeal arches as the embryo developed. At the 24-hpf stage, twist1 transcripts were also observed in the ventral tail-bud region. These observations are consistent with a role for twist1 in craniofacial, vertebral, and early renal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Akimenko MA, Ekker M, Wegner J, Lin W, Westerfield M (1994) Combinatorial expression of three zebrafish genes related to distal-less: part of a homeobox gene code for the head. J Neurosci 14:3475–3486

    PubMed  CAS  Google Scholar 

  • Baylies MK, Bate M (1996) Twist: a myogenic switch in Drosophila. Science 272:1481–1484

    Article  PubMed  CAS  Google Scholar 

  • Bialek P, Kern B, Yang X, Schrock M, Sosic D, Hong N, Wu H, Yu K, Ornitz DM, Olson EN, Justice MJ, Karsenty G (2004) A twist code determines the onset of osteoblast differentiation. Dev Cell 6:423–435

    Article  PubMed  CAS  Google Scholar 

  • Fuchtbauer EM (1995) Expression of M-twist during postimplantation development of the mouse. Dev Dyn 204:316–322

    PubMed  CAS  Google Scholar 

  • Germanguz I, Lev D, Waisman T, Kim CH, Gitelman I (2007) Four twist genes in zebrafish, four expression patterns. Dev Dyn 236:2615–2626

    Article  PubMed  CAS  Google Scholar 

  • Hopwood ND, Pluck A, Gurdon JB (1989) A Xenopus mRNA related to Drosophila twist is expressed in response to induction in the mesoderm and the neural crest. Cell 59:893–903

    Article  PubMed  CAS  Google Scholar 

  • Jan YN, Jan LY (1993) HLH proteins, fly neurogenesis, and vertebrate myogenesis. Cell 75:827–830

    Article  PubMed  CAS  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    PubMed  CAS  Google Scholar 

  • Majumdar A, Lun K, Brand M, Drummond IA (2000) Zebrafish no isthmus reveals a role for pax2.1 in tubule differentiation and patterning events in the pronephric primordia. Development 127:2089–2098

    PubMed  CAS  Google Scholar 

  • Oktenli C, Saglam M, Zafer E, Gul D (2002) Saethre–Chotzen syndrome presenting with incomplete renal Fanconi syndrome. Nephron 92:463–465

    Article  PubMed  Google Scholar 

  • Rauch GJ, Lyons DA, Middendorf I., Friedlander B, Arana N, Reyes T, Talbot WS (2003) Submission and curation of gene expression data. ZFIN direct data submission

  • Renn J, Schaedel M, Volff JN, Goerlich R, Schartl M, Winkler C (2006) Dynamic expression of sparc precedes formation of skeletal elements in the Medaka (Oryzias latipes). Gene 372:208–218

    Article  PubMed  CAS  Google Scholar 

  • Russo R, D’Armiento M, Vecchione R (1991) Renal tubular dysgenesis and very large cranial fontanels in a family with acrocephalosyndactyly S.C. type. Am J Med Genet 39:482–485

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Solnica-Krezel L (2002) Pattern formation in zebrafish. Springer, Heidelberg

    Google Scholar 

  • Soo K, O’Rourke MP, Khoo PL, Steiner KA, Wong N, Behringer RR, Tam PP (2002) Twist function is required for the morphogenesis of the cephalic neural tube and the differentiation of the cranial neural crest cells in the mouse embryo. Dev Biol 247:251–270

    Article  PubMed  CAS  Google Scholar 

  • Spring J, Yanze N, Middel AM, Stierwald M, Groger H, Schmid V (2000) The mesoderm specification factor twist in the life cycle of jellyfish. Dev Biol 228:363–375

    Article  PubMed  CAS  Google Scholar 

  • Stoetzel C, Bolcato-Bellemin AL, Bourgeois P, Perrin-Schmitt F, Meyer D, Wolff M, Remy P (1998) X-twi is expressed prior to gastrulation in presumptive neurectodermal and mesodermal cells in dorsalized and ventralized Xenopus laevis embryos. Int J Dev Biol 42:747–756

    PubMed  CAS  Google Scholar 

  • Tavares AT, Izpisuja-Belmonte JC, Rodriguez-Leon J (2001) Developmental expression of chick twist and its regulation during limb patterning. Int J Dev Biol 45:707–713

    PubMed  CAS  Google Scholar 

  • Thisse B, el Messal M, Perrin-Schmitt F (1987) The twist gene: isolation of a Drosophila zygotic gene necessary for the establishment of dorsoventral pattern. Nucleic Acids Res 15:3439–3453

    Article  PubMed  CAS  Google Scholar 

  • Thisse B, Stoetzel C, Gorostiza-Thisse C, Perrin-Schmitt F (1988) Sequence of the twist gene and nuclear localization of its protein in endomesodermal cells of early Drosophila embryos. EMBO J 7:2175–2183

    PubMed  CAS  Google Scholar 

  • Westerfield M (2000) The zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio). University of Oregon Press, Eugene, OR

    Google Scholar 

  • Wolf C, Thisse C, Stoetzel C, Thisse B, Gerlinger P, Perrin-Schmitt F (1991) The M-twist gene of Mus is expressed in subsets of mesodermal cells and is closely related to the Xenopus X-twi and the Drosophila twist genes. Dev Biol 143:363–373

    Article  PubMed  CAS  Google Scholar 

  • Yasutake J, Inohaya K, Kudo A (2004) Twist functions in vertebral column formation in medaka, Oryzias latipes. Mech Dev 121:883–894

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Vladimir Korzh (Institute of Molecular and Cell Biology, Singapore) and Karuna Sampath (Temasek Life Science Laboratories, Singapore) for invaluable advice, Shangwei Chong, Nick Qiu (IMCB), and Jin Ben for technical assistance. This work was supported by a grant from the National University of Singapore Academic Research Fund (R178-000-104-112) to SSC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel S. Chong.

Additional information

Communicated by M. Hammerschmidt

At the time of acceptance of this manuscript, a publication entitled “Four twist genes in zebrafish, four expression patterns” by Germanguz et al. appeared in the August 2007 issue of Developmental Dynamics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeo, GH., Cheah, F.S.H., Jabs, E.W. et al. Zebrafish twist1 is expressed in craniofacial, vertebral, and renal precursors. Dev Genes Evol 217, 783–789 (2007). https://doi.org/10.1007/s00427-007-0187-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-007-0187-7

Keywords

Navigation