Skip to main content

Advertisement

Log in

Cancer active targeting by nanoparticles: a comprehensive review of literature

  • Review – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Cancer is one of the leading causes of death, and thus, the scientific community has but great efforts to improve cancer management. Among the major challenges in cancer management is development of agents that can be used for early diagnosis and effective therapy. Conventional cancer management frequently lacks accurate tools for detection of early tumors and has an associated risk of serious side effects of chemotherapeutics. The need to optimize therapeutic ratio as the difference with which a treatment affects cancer cells versus healthy tissues lead to idea that it is needful to have a treatment that could act a the “magic bullet”—recognize cancer cells only. Nanoparticle platforms offer a variety of potentially efficient solutions for development of targeted agents that can be exploited for cancer diagnosis and treatment. There are two ways by which targeting of nanoparticles can be achieved, namely passive and active targeting. Passive targeting allows for the efficient localization of nanoparticles within the tumor microenvironment. Active targeting facilitates the active uptake of nanoparticles by the tumor cells themselves.

Methods

Relevant English electronic databases and scientifically published original articles and reviews were systematically searched for the purpose of this review.

Results

In this report, we present a comprehensive review of literatures focusing on the active targeting of nanoparticles to cancer cells, including antibody and antibody fragment-based targeting, antigen-based targeting, aptamer-based targeting, as well as ligand-based targeting.

Conclusion

To date, the optimum targeting strategy has not yet been announced, each has its own advantages and disadvantages even though a number of them have found their way for clinical application. Perhaps, a combination of strategies can be employed to improve the precision of drug delivery, paving the way for a more effective personalized therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adolphi NL, Butler KS, Lovato DM, Tessier TE, Trujillo JE, Hathaway HJ et al (2012) Imaging of Her2-targeted magnetic nanoparticles for breast cancer detection: comparison of SQUID-detected magnetic relaxometry and MRI. Contrast Media Mol Imaging 7(3):308–319

    CAS  PubMed  Google Scholar 

  • Anabousi S, Bakowsky U, Schneider M, Huwer H, Lehr CM, Ehrhardt C (2006) In vitro assessment of transferrin-conjugated liposomes as drug delivery systems for inhalation therapy of lung cancer. Eur J Pharm Sci Off J Eur Fed Pharm Sci 29(5):367–374

    CAS  Google Scholar 

  • Asadishad B, Vossoughi M, Alamzadeh I (2010) In vitro release behavior and cytotoxicity of doxorubicin-loaded gold nanoparticles in cancerous cells. Biotechnol Lett 32(5):649–654

    CAS  PubMed  Google Scholar 

  • Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R et al (2007) Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7(10):3065–3070

    CAS  PubMed  Google Scholar 

  • Beduneau A, Saulnier P, Benoit JP (2007) Active targeting of brain tumors using nanocarriers. Biomaterials 28(33):4947–4967

    CAS  PubMed  Google Scholar 

  • Bisker G, Yeheskely-Hayon D, Minai L, Yelin D (2012) Controlled release of Rituximab from gold nanoparticles for phototherapy of malignant cells. J Control Release 162(2):303–309

    CAS  PubMed  Google Scholar 

  • Bouras A, Kaluzova M, Hadjipanayis CG (2012) 192 Epidermal growth factor receptor antibody-conjugated iron-oxide nanoparticles: therapeutic targeting and radiosensitivity enhancement of glioblastoma. Neurosurgery 71(2):E574–E575

    Google Scholar 

  • Brignole C, Marimpietri D, Gambini C, Allen TM, Ponzoni M, Pastorino F (2003) Development of Fab’ fragments of anti-GD(2) immunoliposomes entrapping doxorubicin for experimental therapy of human neuroblastoma. Cancer Lett 197(1–2):199–204

    CAS  PubMed  Google Scholar 

  • Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60(15):1615–1626

    CAS  PubMed  Google Scholar 

  • Chattopadhyay N, Fonge H, Cai Z, Scollard D, Lechtman E, Done SJ et al (2012) Role of antibody-mediated tumor targeting and route of administration in nanoparticle tumor accumulation in vivo. Mol Pharm 9(8):2168–2179

  • Chen H, Gao J, Lu Y, Kou G, Zhang H, Fan L et al (2008a) Preparation and characterization of PE38KDEL-loaded anti-HER2 nanoparticles for targeted cancer therapy. J Control Release 128(3):209–216

    CAS  PubMed  Google Scholar 

  • Chen HW, Medley CD, Sefah K, Shangguan D, Tang Z, Meng L et al (2008b) Molecular recognition of small-cell lung cancer cells using aptamers. ChemMedChem 3(6):991–1001

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen TJ, Cheng TH, Hung YC, Lin KT, Liu GC, Wang YM (2008c) Targeted folic acid-PEG nanoparticles for noninvasive imaging of folate receptor by MRI. J Biomed Mater Res A 87(1):165–175

    PubMed  Google Scholar 

  • Chen T, Shukoor MI, Wang R, Zhao Z, Yuan Q, Bamrungsap S et al (2011) Smart multifunctional nanostructure for targeted cancer chemotherapy and magnetic resonance imaging. ACS Nano 5(10):7866–7873

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cherukuri P, Curley SA (2010) Use of nanoparticles for targeted, noninvasive thermal destruction of malignant cells. Methods Mol Biol 624:359–373

    CAS  PubMed  Google Scholar 

  • Chiu TC, Huang CC (2009) Aptamer-functionalized nano-biosensors. Sensors (Basel) 9(12):10356–10388

    CAS  Google Scholar 

  • Cho YS, Yoon TJ, Jang ES, Soo Hong K, Young Lee S, Ran Kim O et al (2010) Cetuximab-conjugated magneto-fluorescent silica nanoparticles for in vivo colon cancer targeting and imaging. Cancer Lett 299(1):63–71

    CAS  PubMed  Google Scholar 

  • Choi H, Choi SR, Zhou R, Kung HF, Chen IW (2004) Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. Acad Radiol 11(9):996–1004

    PubMed  Google Scholar 

  • Choi CH, Alabi CA, Webster P, Davis ME (2010) Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci U S A 107(3):1235–1240

    PubMed Central  CAS  PubMed  Google Scholar 

  • Choi J, Yang J, Bang D, Park J, Suh JS, Huh YM et al (2012) Targetable gold nanorods for epithelial cancer therapy guided by near-IR absorption imaging. Small 8(5):746–753

    CAS  PubMed  Google Scholar 

  • Cirstoiu-Hapca A, Bossy-Nobs L, Buchegger F, Gurny R, Delie F (2007) Differential tumor cell targeting of anti-HER2 (Herceptin) and anti-CD20 (Mabthera) coupled nanoparticles. Int J Pharm 331(2):190–196

    CAS  PubMed  Google Scholar 

  • Corbin IR, Ng KK, Ding L, Jurisicova A, Zheng G (2012) Near-infrared fluorescent imaging of metastatic ovarian cancer using folate receptor-targeted high-density lipoprotein nanocarriers. Nanomedicine (Lond) 8(6):875–890

  • Corsi F, Fiandra L, De Palma C, Colombo M, Mazzucchelli S, Verderio P et al (2011) HER2 expression in breast cancer cells is downregulated upon active targeting by antibody-engineered multifunctional nanoparticles in mice. ACS Nano 5(8):6383–6393

    CAS  PubMed  Google Scholar 

  • Danhier F, Feron O, Preat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148(2):135–146

    CAS  PubMed  Google Scholar 

  • Daniels TR, Bernabeu E, Rodriguez JA, Patel S, Kozman M, Chiappetta DA et al (2012) The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta 1820(3):291–317

    PubMed Central  CAS  PubMed  Google Scholar 

  • Day ES, Bickford LR, Slater JH, Riggall NS, Drezek RA, West JL (2010) Antibody-conjugated gold–gold sulfide nanoparticles as multifunctional agents for imaging and therapy of breast cancer. Int J Nanomed 5:445–454

    CAS  Google Scholar 

  • Debbage P (2009) Targeted drugs and nanomedicine: present and future. Curr Pharm Des 15(2):153–172

    CAS  PubMed  Google Scholar 

  • Deepagan VG, Sarmento B, Menon D, Nascimento A, Jayasree A, Sreeranganathan M et al (2012) In vitro targeted imaging and delivery of camptothecin using cetuximab-conjugated multifunctional PLGA-ZnS nanoparticles. Nanomedicine (Lond) 7(4):507–519

    CAS  Google Scholar 

  • Derycke AS, De Witte PA (2002) Transferrin-mediated targeting of hypericin embedded in sterically stabilized PEG-liposomes. Int J Oncol 20(1):181–187

    CAS  PubMed  Google Scholar 

  • Destounis SV, DiNitto P, Logan-Young W, Bonaccio E, Zuley ML, Willison KM (2004) Can computer-aided detection with double reading of screening mammograms help decrease the false-negative rate? Initial experience. Radiology 232(2):578–584

    PubMed  Google Scholar 

  • Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ (2008) Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci U S A 105(45):17356–17361

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dilnawaz F, Singh A, Mohanty C, Sahoo SK (2010) Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials 31(13):3694–3706

    CAS  PubMed  Google Scholar 

  • Eavarone DA, Yu X, Bellamkonda RV (2000) Targeted drug delivery to C6 glioma by transferrin-coupled liposomes. J Biomed Mater Res 51(1):10–14

    CAS  PubMed  Google Scholar 

  • Elnakat H, Ratnam M (2004) Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy. Adv Drug Deliv Rev 56(8):1067–1084

    CAS  PubMed  Google Scholar 

  • Estevez MC, Huang YF, Kang H, O’Donoghue MB, Bamrungsap S, Yan J et al (2010) Nanoparticle-aptamer conjugates for cancer cell targeting and detection. Methods Mol Biol 624:235–248

    CAS  PubMed  Google Scholar 

  • Fan K, Cao C, Pan Y, Lu D, Yang D, Feng J et al (2012) Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat Nanotechnol 7(7):459–464

    CAS  PubMed  Google Scholar 

  • Fang X, Tan W (2010) Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc Chem Res 43(1):48–57

    PubMed Central  CAS  PubMed  Google Scholar 

  • Farokhzad OC, Jon S, Khademhosseini A, Tran TN, Lavan DA, Langer R (2004) Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 64(21):7668–7672

    CAS  PubMed  Google Scholar 

  • Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW et al (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A 103:6315–6320

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fonseca C, Moreira JN, Ciudad CJ (2005) Pedroso de Lima MC, Simoes S. Targeting of sterically stabilised pH-sensitive liposomes to human T-leukaemia cells. Eur J Pharm Biopharm 59(2):359–366

    CAS  PubMed  Google Scholar 

  • Gabizon A, Horowitz AT, Goren D, Tzemach D, Shmeeda H, Zalipsky S (2003) In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice. Clin Cancer Res 9(17):6551–6559

    CAS  PubMed  Google Scholar 

  • Gabizon A, Tzemach D, Gorin J, Mak L, Amitay Y, Shmeeda H et al (2010) Improved therapeutic activity of folate-targeted liposomal doxorubicin in folate receptor-expressing tumor models. Cancer Chemother Pharmacol 66(1):43–52

    CAS  PubMed  Google Scholar 

  • Gan CW, Feng SS (2010) Transferrin-conjugated nanoparticles of poly(lactide)-D-alpha-tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood–brain barrier. Biomaterials 31(30):7748–7757

    CAS  PubMed  Google Scholar 

  • Gao X, Luo Y, Wang Y, Pang J, Liao C, Lu H et al (2012) Prostate stem cell antigen-targeted nanoparticles with dual functional properties: in vivo imaging and cancer chemotherapy. Int J Nanomed 7:4037–4051

    CAS  Google Scholar 

  • Glazer ES, Massey KL, Zhu C, Curley SA (2010a) Pancreatic carcinoma cells are susceptible to noninvasive radio frequency fields after treatment with targeted gold nanoparticles. Surgery 148(2):319–324

    PubMed Central  PubMed  Google Scholar 

  • Glazer ES, Zhu C, Massey KL, Thompson CS, Kaluarachchi WD, Hamir AN et al (2010b) Noninvasive radiofrequency field destruction of pancreatic adenocarcinoma xenografts treated with targeted gold nanoparticles. Clin Cancer Res 16(23):5712–5721

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gosk S, Vermehren C, Storm G, Moos T (2004) Targeting anti-transferrin receptor antibody (OX26) and OX26-conjugated liposomes to brain capillary endothelial cells using in situ perfusion. J Cereb Blood Flow Metab 24(11):1193–1204

    CAS  PubMed  Google Scholar 

  • Greish K (2007) Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J Drug Target 15(7–8):457–464

    CAS  PubMed  Google Scholar 

  • Greish K (2010) Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol Biol 624:25–37

    CAS  PubMed  Google Scholar 

  • Groothuis DR (2000) The blood–brain and blood–tumor barriers: a review of strategies for increasing drug delivery. Neuro Oncol 2(1):45–59

    PubMed Central  CAS  PubMed  Google Scholar 

  • Harding J, Burtness B (2005) Cetuximab: an epidermal growth factor receptor chemeric human-murine monoclonal antibody. Drugs Today (Barc) 41(2):107–127

    CAS  Google Scholar 

  • Hathaway HJ, Butler KS, Adolphi NL, Lovato DM, Belfon R, Fegan D et al (2011) Detection of breast cancer cells using targeted magnetic nanoparticles and ultra-sensitive magnetic field sensors. Breast Cancer Res 13(5):R108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Herr JK, Smith JE, Medley CD, Shangguan D, Tan W (2006) Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal Chem 78(9):2918–2924

    CAS  PubMed  Google Scholar 

  • Hilgenbrink AR, Low PS (2005) Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J Pharm Sci 94(10):2135–2146

    CAS  PubMed  Google Scholar 

  • Hong M, Zhu S, Jiang Y, Tang G, Sun C, Fang C et al (2010) Novel anti-tumor strategy: pEG-hydroxycamptothecin conjugate loaded transferrin-PEG-nanoparticles. J Control Release 141(1):22–29

    CAS  PubMed  Google Scholar 

  • Hrkach J, Von Hoff D, Mukkaram Ali M, Andrianova E, Auer J, Campbell T et al (2012) Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med 4(128):128ra39

    PubMed  Google Scholar 

  • Huang YF, Chang HT, Tan W (2008) Cancer cell targeting using multiple aptamers conjugated on nanorods. Anal Chem 80(3):567–572

    CAS  PubMed  Google Scholar 

  • Huang YF, Lin YW, Lin ZH, Chang HT (2009) Aptamer-modified gold nanoparticles for targeting breast cancer cells through light scattering. J Nanopart Res 11:775–783

    CAS  Google Scholar 

  • Huh YM, Jun YW, Song HT, Kim S, Choi JS, Lee JH et al (2005) In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc 127(35):12387–12391

    CAS  PubMed  Google Scholar 

  • Huwyler J, Wu D, Pardridge WM (1996) Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci U S A 93(24):14164–14169

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hwang do W, Ko HY, Lee JH, Kang H, Ryu SH, Song IC et al (2010) A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer. J Nucl Med 51(1):98–105

    PubMed  Google Scholar 

  • Iinuma H, Maruyama K, Okinaga K, Sasaki K, Sekine T, Ishida O et al (2002) Intracellular targeting therapy of cisplatin-encapsulated transferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer. Int J Cancer 99(1):130–137

    CAS  PubMed  Google Scholar 

  • Ishida O, Maruyama K, Tanahashi H, Iwatsuru M, Sasaki K, Eriguchi M et al (2001) Liposomes bearing polyethyleneglycol-coupled transferrin with intracellular targeting property to the solid tumors in vivo. Pharm Res 18(7):1042–1048

    CAS  PubMed  Google Scholar 

  • Javier DJ, Nitin N, Levy M, Ellington A, Richards-Kortum R (2008) Aptamer-targeted gold nanoparticles as molecular-specific contrast agents for reflectance imaging. Bioconjug Chem 19(6):1309–1312

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jefferies WA, Brandon MR, Hunt SV, Williams AF, Gatter KC, Mason DY (1984) Transferrin receptor on endothelium of brain capillaries. Nature 312(5990):162–163

    CAS  PubMed  Google Scholar 

  • Jiang W, Xie H, Ghoorah D, Shang Y, Shi H, Liu F et al (2012) Conjugation of functionalized SPIONs with transferrin for targeting and imaging brain glial tumors in rat model. PLoS ONE 7(5):e37376

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim D, Jeong YY, Jon S (2010) A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4(7):3689–3696

    CAS  PubMed  Google Scholar 

  • Kobayashi T, Ishida T, Okada Y, Ise S, Harashima H, Kiwada H (2007) Effect of transferrin receptor-targeted liposomal doxorubicin in P-glycoprotein-mediated drug resistant tumor cells. Int J Pharm 329(1–2):94–102

    CAS  PubMed  Google Scholar 

  • Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256(5517):495–497

    CAS  PubMed  Google Scholar 

  • Kolishetti N, Dhar S, Valencia PM, Lin LQ, Karnik R, Lippard SJ et al (2010) Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proc Natl Acad Sci U S A 107(42):17939–17944

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kreuter J (2007) Nanoparticles—a historical perspective. Int J Pharm 331(1):1–10

    CAS  PubMed  Google Scholar 

  • LaRocque J, Bharali DJ, Mousa SA (2009) Cancer detection and treatment: the role of nanomedicines. Mol Biotechnol 42(3):358–366

    CAS  PubMed  Google Scholar 

  • Lee JH, Yigit MV, Mazumdar D, Lu Y (2010) Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates. Adv Drug Deliv Rev 62(6):592–605

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li X, Ding L, Xu Y, Wang Y, Ping Q (2009a) Targeted delivery of doxorubicin using stealth liposomes modified with transferrin. Int J Pharm 373(1–2):116–123

    CAS  PubMed  Google Scholar 

  • Li G, Li D, Zhang L, Zhai J, Wang E (2009b) One-step synthesis of folic acid protected gold nanoparticles and their receptor-mediated intracellular uptake. Chemistry 15(38):9868–9873

    CAS  PubMed  Google Scholar 

  • Li N, Larson T, Nguyen HH, Sokolov KV, Ellington AD (2010) Directed evolution of gold nanoparticle delivery to cells. Chem Commun (Camb) 46(3):392–394

    Google Scholar 

  • Liao C, Sun Q, Liang B, Shen J, Shuai X (2011) Targeting EGFR-overexpressing tumor cells using cetuximab-immunomicelles loaded with doxorubicin and superparamagnetic iron oxide. Eur J Radiol 80(3):699–705

    PubMed  Google Scholar 

  • Ling Y, Wei K, Luo Y, Gao X, Zhong S (2011) Dual docetaxel/superparamagnetic iron oxide loaded nanoparticles for both targeting magnetic resonance imaging and cancer therapy. Biomaterials 32(29):7139–7150

    CAS  PubMed  Google Scholar 

  • Liss M, Petersen B, Wolf H, Prohaska E (2002) An aptamer-based quartz crystal protein biosensor. Anal Chem 74(17):4488–4495

    CAS  PubMed  Google Scholar 

  • Liu G, Mao X, Phillips JA, Xu H, Tan W, Zeng L (2009) Aptamer-nanoparticle strip biosensor for sensitive detection of cancer cells. Anal Chem 81(24):10013–10018

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu D, Chen C, Hu G, Mei Q, Qiu H, Long G (2011) Specific targeting of nasopharyngeal carcinoma cell line CNE1 by C225-conjugated ultrasmall superparamagnetic iron oxide particles with magnetic resonance imaging. Acta Biochim Biophys Sin (Shanghai) 43(4):301–306

    CAS  Google Scholar 

  • Low PS, Kularatne SA (2009) Folate-targeted therapeutic and imaging agents for cancer. Current Opin Chem Biol 13(3):256–262

    CAS  Google Scholar 

  • Lu Y, Yang J, Sega E (2006) Issues related to targeted delivery of proteins and peptides. AAPS J 8(3):E466–E478

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lu RM, Chang YL, Chen MS, Wu HC (2011) Single chain anti-c-Met antibody conjugated nanoparticles for in vivo tumor-targeted imaging and drug delivery. Biomaterials 32(12):3265–3274

    CAS  PubMed  Google Scholar 

  • Manju S, Sreenivasan K (2012) Gold nanoparticles generated and stabilized by water soluble curcumin-polymer conjugate: blood compatibility evaluation and targeted drug delivery onto cancer cells. J Colloid Interface Sci 368(1):144–151

    CAS  PubMed  Google Scholar 

  • Marty C, Schwendener RA (2005) Cytotoxic tumor targeting with scFv antibody-modified liposomes. Methods Mol Med 109:389–402

    CAS  PubMed  Google Scholar 

  • Marty C, Odermatt B, Schott H, Neri D, Ballmer-Hofer K, Klemenz R et al (2002) Cytotoxic targeting of F9 teratocarcinoma tumours with anti-ED-B fibronectin scFv antibody modified liposomes. Br J Cancer 87(1):106–112

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marty C, Langer-Machova Z, Sigrist S, Schott H, Schwendener RA, Ballmer-Hofer K (2006) Isolation and characterization of a scFv antibody specific for tumor endothelial marker 1 (TEM1), a new reagent for targeted tumor therapy. Cancer Lett 235(2):298–308

    CAS  PubMed  Google Scholar 

  • Matherly LH, Goldman DI (2003) Membrane transport of folates. Vitam Horm 66:403–456

    CAS  PubMed  Google Scholar 

  • Medley CD, Smith JE, Tang Z, Wu Y, Bamrungsap S, Tan W (2008) Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal Chem 80(4):1067–1072

    CAS  PubMed  Google Scholar 

  • Nahta R, Yu D, Hung MC, Hortobagyi GN, Esteva FJ (2006) Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol 3(5):269–280

    CAS  PubMed  Google Scholar 

  • Nakase M, Inui M, Okumura K, Kamei T, Nakamura S, Tagawa T (2005) p53 gene therapy of human osteosarcoma using a transferrin-modified cationic liposome. Mol Cancer Ther 4(4):625–631

    CAS  PubMed  Google Scholar 

  • Ni S, Stephenson SM, Lee RJ (2002) Folate receptor targeted delivery of liposomal daunorubicin into tumor cells. Anticancer Res 22(4):2131–2135

    CAS  PubMed  Google Scholar 

  • Ni X, Castanares M, Mukherjee A, Lupold SE (2011) Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem 18(27):4206–4214

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nobs L, Buchegger F, Gurny R, Allemann E (2006) Biodegradable nanoparticles for direct or two-step tumor immunotargeting. Bioconjug Chem 17(1):139–145

    CAS  PubMed  Google Scholar 

  • Oghabian MA, Jeddi-Tehrani M, Zolfaghari A, Shamsipour F, Khoei S, Amanpour S (2011) Detectability of Her2 positive tumors using monoclonal antibody conjugated iron oxide nanoparticles in MRI. J Nanosci Nanotechnol 11(6):5340–5344

    CAS  PubMed  Google Scholar 

  • Pan XQ, Zheng X, Shi G, Wang H, Ratnam M, Lee RJ (2002) Strategy for the treatment of acute myelogenous leukemia based on folate receptor beta-targeted liposomal doxorubicin combined with receptor induction using all-trans retinoic acid. Blood 100(2):594–602

    CAS  PubMed  Google Scholar 

  • Pan X, Wu G, Yang W, Barth RF, Tjarks W, Lee RJ (2007) Synthesis of cetuximab-immunoliposomes via a cholesterol-based membrane anchor for targeting of EGFR. Bioconjug Chem 18(1):101–108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Parab HJ, Huang JH, Lai TC, Jan YH, Liu RS, Wang JL et al (2011) Biocompatible transferrin-conjugated sodium hexametaphosphate-stabilized gold nanoparticles: synthesis, characterization, cytotoxicity and cellular uptake. Nanotechnology 22(39):395706

    PubMed  Google Scholar 

  • Patra CR, Bhattacharya R, Wang E, Katarya A, Lau JS, Dutta S et al (2008) Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res 68(6):1970–1978

    CAS  PubMed  Google Scholar 

  • Patra CR, Bhattacharya R, Mukherjee P (2010) Fabrication and functional characterization of goldnanoconjugates for potential application in ovarian cancer. J Mater Chem 20(3):547–554

    PubMed Central  CAS  PubMed  Google Scholar 

  • Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong S (2009) Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Biomaterials 30(30):6065–6075

    CAS  PubMed  Google Scholar 

  • Press MF, Cordon-Cardo C, Slamon DJ (1990) Expression of the HER-2/neu proto-oncogene in normal human adult and fetal tissues. Oncogene 5(7):953–962

    CAS  PubMed  Google Scholar 

  • Pulkkinen M, Pikkarainen J, Wirth T, Tarvainen T, Haapa-aho V, Korhonen H et al (2008) Three-step tumor targeting of paclitaxel using biotinylated PLA-PEG nanoparticles and avidin-biotin technology: formulation development and in vitro anticancer activity. Eur J Pharm Biopharm 70(1):66–74

    CAS  PubMed  Google Scholar 

  • Puvanakrishnan P, Diagaradjane P, Kazmi SM, Dunn AK, Krishnan S, Tunnell JW (2012) Narrow band imaging of squamous cell carcinoma tumors using topically delivered anti-EGFR antibody conjugated gold nanorods. Lasers Surg Med 44(4):310–317

    PubMed  Google Scholar 

  • Qian ZM, Tang PL (1995) Mechanisms of iron uptake by mammalian cells. Biochim Biophys Acta 1269(3):205–214

    PubMed  Google Scholar 

  • Riviere K, Huang Z, Jerger K, Macaraeg N, Szoka FC Jr (2011) Antitumor effect of folate-targeted liposomal doxorubicin in KB tumor-bearing mice after intravenous administration. J Drug Target 19(1):14–24

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ruan J, Song H, Qian Q, Li C, Wang K, Bao C et al (2012) HER2 monoclonal antibody conjugated RNase-A-associated CdTe quantum dots for targeted imaging and therapy of gastric cancer. Biomaterials 33(29):7093–7102

    CAS  PubMed  Google Scholar 

  • Rudolph C, Schillinger U, Plank C, Gessner A, Nicklaus P, Muller R et al (2002) Nonviral gene delivery to the lung with copolymer-protected and transferrin-modified polyethylenimine. Biochim Biophys Acta 1573(1):75–83

    CAS  PubMed  Google Scholar 

  • Sahoo SK, Labhasetwar V (2005) Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention. Mol Pharm 2(5):373–383

    CAS  PubMed  Google Scholar 

  • Sahoo SK, Ma W, Labhasetwar V (2004) Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int J Cancer 112(2):335–340

    CAS  PubMed  Google Scholar 

  • Sapra P, Moase EH, Ma J, Allen TM (2004) Improved therapeutic responses in a xenograft model of human B lymphoma (Namalwa) for liposomal vincristine versus liposomal doxorubicin targeted via anti-CD19 IgG2a or Fab’ fragments. Clin Cancer Res 10(3):1100–1111

    CAS  PubMed  Google Scholar 

  • Schroeder JE, Shweky I, Shmeeda H, Banin U, Gabizon A (2007) Folate-mediated tumor cell uptake of quantum dots entrapped in lipid nanoparticles. J Control Release 124(1–2):28–34

    CAS  PubMed  Google Scholar 

  • Serda RE, Adolphi NL, Bisoffi M, Sillerud LO (2007) Targeting and cellular trafficking of magnetic nanoparticles for prostate cancer imaging. Mol Imaging 6(4):277–288

    CAS  PubMed  Google Scholar 

  • Shah N, Chaudhari K, Dantuluri P, Murthy RS, Das S (2009) Paclitaxel-loaded PLGA nanoparticles surface modified with transferrin and Pluronic((R))P85, an in vitro cell line and in vivo biodistribution studies on rat model. J Drug Target 17(7):533–542

    CAS  PubMed  Google Scholar 

  • Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P et al (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci U S A 103(32):11838–11843

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shi X, Wang S, Meshinchi S, Van Antwerp ME, Bi X, Lee I et al (2007) Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging. Small 3(7):1245–1252

    CAS  PubMed  Google Scholar 

  • Shi X, Wang SH, Van Antwerp ME, Chen X, Baker JR Jr (2009a) Targeting and detecting cancer cells using spontaneously formed multifunctional dendrimer-stabilized gold nanoparticles. Analyst 134(7):1373–1379

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shi X, Wang SH, Lee I, Shen M, Baker JR Jr (2009b) Comparison of the internalization of targeted dendrimers and dendrimer-entrapped gold nanoparticles into cancer cells. Biopolymers 91(11):936–942

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shmeeda H, Mak L, Tzemach D, Astrahan P, Tarshish M, Gabizon A (2006) Intracellular uptake and intracavitary targeting of folate-conjugated liposomes in a mouse lymphoma model with up-regulated folate receptors. Mol Cancer Ther 5(4):818–824

    CAS  PubMed  Google Scholar 

  • Song EQ, Zhang ZL, Luo QY, Lu W, Shi YB, Pang DW (2009) Tumor cell targeting using folate-conjugated fluorescent quantum dots and receptor-mediated endocytosis. Clin Chem 55(5):955–963

    PubMed Central  CAS  PubMed  Google Scholar 

  • Spector NL, Blackwell KL (2009) Understanding the mechanisms behind trastuzumab therapy for human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol 27(34):5838–5847

    CAS  PubMed  Google Scholar 

  • Steinhauser I, Spankuch B, Strebhardt K, Langer K (2006) Trastuzumab-modified nanoparticles: optimisation of preparation and uptake in cancer cells. Biomaterials 27(28):4975–4983

    CAS  PubMed  Google Scholar 

  • Sugano M, Egilmez NK, Yokota SJ, Chen FA, Harding J, Huang SK et al (2000) Antibody targeting of doxorubicin-loaded liposomes suppresses the growth and metastatic spread of established human lung tumor xenografts in severe combined immunodeficient mice. Cancer Res 60(24):6942–6949

    CAS  PubMed  Google Scholar 

  • Suzuki R, Takizawa T, Kuwata Y, Mutoh M, Ishiguro N, Utoguchi N et al (2008) Effective anti-tumor activity of oxaliplatin encapsulated in transferrin-PEG-liposome. Int J Pharm 346(1–2):143–150

    CAS  PubMed  Google Scholar 

  • Taghdisi SM, Lavaee P, Ramezani M, Abnous K (2011) Reversible targeting and controlled release delivery of daunorubicin to cancer cells by aptamer-wrapped carbon nanotubes. Eur J Pharm Biopharm 77(2):200–206

    CAS  PubMed  Google Scholar 

  • Talekar M, Kendall J, Denny W, Garg S (2011) Targeting of nanoparticles in cancer: drug delivery and diagnostics. Anticancer Drugs 22(10):949–962

    CAS  PubMed  Google Scholar 

  • Taylor RM, Sillerud LO (2012) Paclitaxel-loaded iron platinum stealth immunomicelles are potent MRI imaging agents that prevent prostate cancer growth in a PSMA-dependent manner. Int J Nanomed 7:4341–4352

    CAS  Google Scholar 

  • Taylor RM, Huber DL, Monson TC, Ali AM, Bisoffi M, Sillerud LO (2011) Multifunctional iron platinum stealth immunomicelles: targeted detection of human prostate cancer cells using both fluorescence and magnetic resonance imaging. J Nanopart Res 13(10):4717–4729

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thistlethwaite JR Jr, Cosimi AB, Delmonico FL, Rubin RH, Talkoff-Rubin N, Nelson PW et al (1984) Evolving use of OKT3 monoclonal antibody for treatment of renal allograft rejection. Transplantation 38(6):695–701

    PubMed  Google Scholar 

  • Thomas TP, Patri AK, Myc A, Myaing MT, Ye JY, Norris TB et al (2004) In vitro targeting of synthesized antibody-conjugated dendrimer nanoparticles. Biomacromolecules 5(6):2269–2274

    CAS  PubMed  Google Scholar 

  • Torchilin VP (2010) Passive and active drug targeting: drug delivery to tumors as an example. Handb Exp Pharmacol 197:3–53

    CAS  PubMed  Google Scholar 

  • Ulbrich K, Hekmatara T, Herbert E, Kreuter J (2009) Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB). Eur J Pharm Biopharm 71(2):251–256

    CAS  PubMed  Google Scholar 

  • Waldmann TA (2003) Immunotherapy: past, present and future. Nat Med 9(3):269–277

    CAS  PubMed  Google Scholar 

  • Wang AZ, Gu F, Zhang L, Chan JM, Radovic-Moreno A, Shaikh MR et al (2008a) Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin Biol Ther 8(8):1063–1070

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X, Yang L, Chen ZG, Shin DM (2008b) Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin 58(2):97–110

    PubMed  Google Scholar 

  • Wang AZ, Bagalkot V, Vasilliou CC, Gu F, Alexis F, Zhang L et al (2008c) Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem 3(9):1311–1315

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X, Wang Y, Chen ZG, Shin DM (2009) Advances of cancer therapy by nanotechnology. Cancer Res Treat 41(1):1–11

    PubMed Central  PubMed  Google Scholar 

  • Wang H, Wang S, Liao Z, Zhao P, Su W, Niu R et al (2012) Folate-targeting magnetic core-shell nanocarriers for selective drug release and imaging. Int J Pharm 430(1–2):342–349

    CAS  PubMed  Google Scholar 

  • Wang H, Zheng L, Peng C, Shen M, Shi X, Zhang G (2013) Folic acid-modified dendrimer-entrapped gold nanoparticles as nanoprobes for targeted CT imaging of human lung adenocarcinoma. Biomaterials 34(2):470–480

  • Wartlick H, Michaelis K, Balthasar S, Strebhardt K, Kreuter J, Langer K (2004) Highly specific HER2-mediated cellular uptake of antibody-modified nanoparticles in tumour cells. J Drug Target 12(7):461–471

    CAS  PubMed  Google Scholar 

  • Wu J, Lu Y, Lee A, Pan X, Yang X, Zhao X et al (2007) Reversal of multidrug resistance by transferrin-conjugated liposomes co-encapsulating doxorubicin and verapamil. J Pharm Pharm Sci Publ Can Soc Pharm Sci (Societe canadienne des sciences pharmaceutiques) 10(3):350–357

    CAS  Google Scholar 

  • Xu L, Pirollo KF, Tang WH, Rait A, Chang EH (1999) Transferrin-liposome-mediated systemic p53 gene therapy in combination with radiation results in regression of human head and neck cancer xenografts. Hum Gene Ther 10(18):2941–2952

    CAS  PubMed  Google Scholar 

  • Xu Z, Gu W, Huang J, Sui H, Zhou Z, Yang Y et al (2005) In vitro and in vivo evaluation of actively targetable nanoparticles for paclitaxel delivery. Int J Pharm 288(2):361–368

    CAS  PubMed  Google Scholar 

  • Yang J, Eom K, Lim EK, Park J, Kang Y, Yoon DS et al (2008) In situ detection of live cancer cells by using bioprobes based on Au nanoparticles. Langmuir 24(21):12112–12115

    CAS  PubMed  Google Scholar 

  • Yang L, Mao H, Wang YA, Cao Z, Peng X, Wang X et al (2009) Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging. Small 5(2):235–243

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang HM, Park CW, Woo MA, Kim MI, Jo YM, Park HG et al (2010) HER2/neu antibody conjugated poly(amino acid)-coated iron oxide nanoparticles for breast cancer MR imaging. Biomacromolecules 11(11):2866–2872

  • Yu B, Tai HC, Xue W, Lee LJ, Lee RJ (2010) Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol 27(7):286–298

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yu MK, Kim D, Lee IH, So JS, Jeong YY, Jon S (2011a) Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small 7(15):2241–2249

    CAS  PubMed  Google Scholar 

  • Yu C, Hu Y, Duan J, Yuan W, Wang C, Xu H et al (2011b) Novel aptamer-nanoparticle bioconjugates enhances delivery of anticancer drug to MUC1-positive cancer cells in vitro. PLoS ONE 6(9):e24077

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yu MK, Park J, Jon S (2012) Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2(1):3–44

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Kohler N, Zhang M (2002) Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23(7):1553–1561

    CAS  PubMed  Google Scholar 

  • Zhang L, Radovic-Moreno AF, Alexis F, Gu FX, Basto PA, Bagalkot V et al (2007) Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle-aptamer bioconjugates. ChemMedChem 2(9):1268–1271

    CAS  PubMed  Google Scholar 

  • Zhang Y, Hong H, Cai W (2011) Tumor-targeted drug delivery with aptamers. Curr Med Chem 18(27):4185–4194

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao N, Bagaria HG, Wong MS, Zu Y (2011) A nanocomplex that is both tumor cell-selective and cancer gene-specific for anaplastic large cell lymphoma. J Nanobiotechnol 9:2

    CAS  Google Scholar 

  • Zheng Y, Yu B, Weecharangsan W, Piao L, Darby M, Mao Y et al (2010) Transferrin-conjugated lipid-coated PLGA nanoparticles for targeted delivery of aromatase inhibitor 7alpha-APTADD to breast cancer cells. Int J Pharm 390(2):234–241

    CAS  PubMed  Google Scholar 

  • Zhou Y, Drummond DC, Zou H, Hayes ME, Adams GP, Kirpotin DB et al (2007) Impact of single-chain Fv antibody fragment affinity on nanoparticle targeting of epidermal growth factor receptor-expressing tumor cells. J Mol Biol 371(4):934–947

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

There is no actual or potential conflict of interest with the production and publication of this work. No author has a direct or indirect commercial financial incentive associated with the publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer Refaat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazak, R., Houri, M., El Achy, S. et al. Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol 141, 769–784 (2015). https://doi.org/10.1007/s00432-014-1767-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-014-1767-3

Keywords

Navigation