Skip to main content

Advertisement

Log in

Astrocyte mediated modulation of blood-brain barrier permeability does not correlate with a loss of tight junction proteins from the cellular contacts

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In the central nervous system (CNS) complex endothelial tight junctions (TJs) form a restrictive paracellular diffusion barrier, the blood-brain barrier (BBB). Pathogenic changes within the CNS are frequently accompanied by the loss of BBB properties, resulting in brain edema. In order to investigate whether BBB leakiness can be monitored by a loss of TJ proteins from cellular borders, we used an in vitro BBB model where brain endothelial cells in co-culture with astrocytes form a tight permeability barrier for 3H-inulin and 14C-sucrose. Removal of astrocytes from the co-culture resulted in an increased permeability to small tracers across the brain endothelial cell monolayer and an opening of the TJs to horseradish peroxidase as detected by electron microscopy. Strikingly, opening of the endothelial TJs was not accompanied by any visible change in the molecular composition of endothelial TJs as junctional localization of the TJ-associated proteins claudin-3, claudin-5, occludin, ZO-1 or ZO-2 or the adherens junction-associated proteins β-catenin or p120cas did not change. Thus, opening of BBB TJs is not readily accompanied by the complete loss of the junctional localization of TJ proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a–d
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ando-Akatsuka Y, Saitou M, Hirase T, Kishi M, Sakakibara A, Itoh M, Yonemura S, Furuse M, Tsukita S (1996) Interspecies diversity of the occludin sequence: cDNA cloning of human, mouse, dog, and rat-kangaroo homologues. J Cell Biol 133:43–47

    CAS  PubMed  Google Scholar 

  • Booher J, Sensenbrenner M (1972) Growth and cultivation of dissociated neurons and glial cells from embryonic chick, rat and human brain in flask cultures. Neurobiology 2:97–105

    CAS  PubMed  Google Scholar 

  • Brillaut J, Berezowsky V, Cecchelli R, Dehouck MP (2002) Intercommunications between brain capillary endothelial cells and glial cells increase the transcellular permeability of the blood-brain barrier during ischemia. J Neurochem 83:807–817

    PubMed  Google Scholar 

  • Cecchelli R, Dehouck B, Descamps L, Fenart L, Buee-Scherrer V, Duhem C, Lundquist S, Rentfel M, Torpier G, Dehouck MP (1999) In vitro model for evaluating drug transport across the blood-brain barrier. Adv Drug Deliv Rev 36:165–178

    Article  CAS  PubMed  Google Scholar 

  • Crone C, Olesen SP (1982) Electrical resistance of brain microvascular endothelium. Brain Res 241:49–55

    Article  CAS  PubMed  Google Scholar 

  • Dehouck MP, Meresse S, Delorme P, Fruchart JC, Cecchelli R (1990) An easier, reproducible, and mass-production method to study the blood-brain barrier in vitro. J Neurochem 54:1798–1801

    CAS  PubMed  Google Scholar 

  • Dejana E (1996) Endothelial adherens junctions: implications in the control of vascular permeability and angiogenesis. J Clin Invest 98:1949–1953

    CAS  PubMed  Google Scholar 

  • Descamps L, Cecchelli R, Torpier G (1997) Effects of tumor necrosis factor on receptor-mediated endocytosis and barrier functions of bovine brain capillary endothelial cell monolayers. J Neuroimmunol 74:173–184

    CAS  PubMed  Google Scholar 

  • Engelhardt B, Risau W (1995) The development of the blood-brain barrier. In: Greenwood J, Begley D, Segal M, (eds) New concepts of a blood-brain barrier. Plenum Press, London

  • Farqhuar MG, Palade GE (1963) Junctional complexes in various epithelia. J Cell Biol 17:375–412

    CAS  Google Scholar 

  • Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S (1993) Occludin—a novel integral membrane-protein localizing at tight junctions. J Cell Biol 123:1777–1788

    CAS  PubMed  Google Scholar 

  • Furuse M, Sasaki H, Fujimoto K, Tsukita S (1998) A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol 143:391–401

    CAS  PubMed  Google Scholar 

  • Furuse M, Sasaki H, Tsukita S (1999) Manner of interaction of heterogenous claudin species within and between tight junction strands. J Cell Biol 147:891–903

    CAS  PubMed  Google Scholar 

  • Goldstein GW (1988) Endothelial cell-astrocyte interactions. A cellular model of the blood-brain barrier. Ann N Y Acad Sci 529:31–39

    CAS  PubMed  Google Scholar 

  • Gumbiner B, Simons K (1986) A functional assay for proteins involved in establishing an epithelial occluding barrier: identification of an uvomorulin-like polypeptide. J Cell Biol 102:457–468

    CAS  PubMed  Google Scholar 

  • Kniesel U, Wolburg H (2000) Tight junctions of the blood-brain barrier. Cell Mol Neurobiol 20:57–76

    Article  CAS  PubMed  Google Scholar 

  • Liebner S, Kniesel U, Kalbacher H, Wolburg H (2000a) Correlation of tight junction morphology with the expression of tight junction proteins in blood-brain barrier endothelial cells. Eur J Cell Biol 79:707–717

    CAS  PubMed  Google Scholar 

  • Liebner S, Fischmann A, Rascher G, Duffner F, Grote E-H, Kalbacher H (2000b) Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol 100:323–331

    CAS  PubMed  Google Scholar 

  • Meresse S, Dehouck MP, Delorme P, Bensaid M, Tauber JP, Delbart C, Fruchart JC, Cecchelli R (1989) Bovine brain endothelial cells express tight junctions and monoamine oxidase activity in long-term culture. J Neurochem 53:1363–1371

    Google Scholar 

  • Mitic LL, Van Itallie CM, Anderson JM (2000) Molecular physiology and pathophysiology of tight junctions. I. Tight junction structure and function: lessons from mutant animals and proteins. Am J Physiol 279:G250–G254

    CAS  PubMed  Google Scholar 

  • Morita K, Furuse M, Fujimoto K, Tsukita S (1999a) Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci U S A 96:511–516

    CAS  PubMed  Google Scholar 

  • Morita K, Sasaki H, Furuse M, Tsukita S (1999b) Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol 147:185–194

    Article  CAS  PubMed  Google Scholar 

  • Nico B, Frigeri A, Nicchia GP, Corsi P, Ribatti D, Quondamatteo F, Herken R, Girolamo F, Marzullo A, Svelto M, Roncali L (2003) Severe alterations of endothelial and glial cells in the blood-brain barrier of dystrophic mdx mice. Glia 42:235–51

    PubMed  Google Scholar 

  • Phelps CH (1972) The development of glio-vascular relationships in the rat spinal cord. An electron microscopic study. Z Zellforsch Mikrosk Anat 128:555–563

    CAS  PubMed  Google Scholar 

  • Rapoport SI, Robinson PJ (1986) Tight junctional modifications as the basis of osmotic opening of the blood-brain barrier. Ann N Y Acad Sci 481:250–267

    CAS  PubMed  Google Scholar 

  • Rubin LL, Hall DE, Porter S, Barbu K, Cannon C, Horner HC, Janatpour M, Liaw CW, Manning K, Morales J, Tanner LI, Tomaselli KJ (1991) A cell-culture model of the blood-brain barrier. J Cell Biol 115:1725–1735

    CAS  PubMed  Google Scholar 

  • Saitou M, Furuse M, Sasaki H, Schulzke J-D, Fromm M, Takano H, Noda T, Tsukita S (2000) Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 22:4131–4142

    Google Scholar 

  • Schulze C, Firth JA (1993) Immunohistochemical localization of adherens junction components in blood-brain-barrier microvessels of the rat. J Cell Sci 104:773–782

    PubMed  Google Scholar 

  • Siflinger-Birnboim A, Del Vecchio PJ, Ciooper JA, Blumenstock FA, Shepard JN, Mailik AB (1987) Molecular sieving characteristics of the cultured endothelial monolayer. J Cell Physiol 132:111–117

    CAS  PubMed  Google Scholar 

  • Tsukita S, Furuse M, Itoh M (1999) Structural and signalling molecules come together at tight junctions. Curr Opin Cell Biol 11:628–633

    CAS  PubMed  Google Scholar 

  • Wolburg H, Lippoldt A (2002) Tight junctions of the blood-brain barrier: Development, composition and regulation. Vasc Pharmacol 38:323–337

    Article  CAS  Google Scholar 

  • Wolburg H, Neuhaus J, Kniesel U, Krauss B, Schmid EM, Ocalan M, Farrell C, Risau W (1994) Modulation of tight junction structure in blood-brain-barrier endothelial-cells—effects of tissue-culture, 2nd messengers and co-cultured astrocytes. J Cell Sci 107:1347–1357

    CAS  PubMed  Google Scholar 

  • Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, Hamm S, Duffner F, Grote E-H, Risau W, Engelhardt B (2003) Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol 105:586–592

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Urban Deutsch, Friedemann Kiefer and Dietmar Vestweber for helpful discussions with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Britta Engelhardt.

Additional information

This work is dedicated to the memory of Werner Risau (died 13.12.1998), who initiated this collaboration

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamm, S., Dehouck, B., Kraus, J. et al. Astrocyte mediated modulation of blood-brain barrier permeability does not correlate with a loss of tight junction proteins from the cellular contacts. Cell Tissue Res 315, 157–166 (2004). https://doi.org/10.1007/s00441-003-0825-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-003-0825-y

Keywords

Navigation