Skip to main content
Log in

Increased progenitor proliferation and apoptotic cell death in the sensory lineage of mice overexpressing N-myc

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

N-myc, a member of the myc family of bHLH transcription factors, is expressed mainly in the nervous system, including derivatives of neural crest cells in the periphery during development, such as the sensory dorsal root ganglion (DRG). Previous studies suggest that N-myc is involved in the proliferation of progenitor cells in the sensory lineage. To address the role of N-myc in the development of peripheral sensory neurons, we have overexpressed N-myc in sensory progenitor cells. The overexpression of N-myc did not significantly affect the number of multipotent neural crest cells or glial differentiation but caused a brief and marked increase of both proliferation and apoptosis in the DRG at embryonic day 11 (E11), thus coinciding with the stage of cell-cycle exit. At E17, the total number of cells in the lumbar DRG of mice with forced expression of N-myc was significantly reduced compared with that in wild-type mice. Among the different DRG subpopulations examined, the number of parvalbumin-positive neurons representing large-diameter proprioceptive neurons increased significantly. Our results indicate that forced expression of N-myc in the sensory lineage leads to unscheduled cell-cycle re-entry and excessive apoptosis and show that N-myc can affect the composition of different functional subtypes of sensory neurons in the DRG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvarez-Buylla A, Garcia-Verdugo JM, Tramontin AD (2001) A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2:287–293

    Article  PubMed  CAS  Google Scholar 

  • Anderson DJ (1999) Lineages and transcription factors in the specification of vertebrate primary sensory neurons. Curr Opin Neurobiol 9:517–524

    Article  PubMed  CAS  Google Scholar 

  • Bibel M, Barde YA (2000) Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 14:2919–2937

    Article  PubMed  CAS  Google Scholar 

  • Britsch S, Goerich DE, Riethmacher D, Peirano RI, Rossner M, Nave KA, Birchmeier C, Wegner M (2001) The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev 15:66–78

    Article  PubMed  CAS  Google Scholar 

  • Charron J, Malynn BA, Fisher P, Stewart V, Jeannotte L, Goff SP, Robertson EJ, Alt FW (1992) Embryonic lethality in mice homozygous for a targeted disruption of the N-myc gene. Genes Dev 6:2248–2257

    Article  PubMed  CAS  Google Scholar 

  • Dahlstrand J, Lardelli M, Lendahl U (1995) Nestin mRNA expression correlates with the central nervous system progenitor cell state in many, but not all, regions of developing central nervous system. Brain Res Dev Brain Res 84:109–129

    Article  PubMed  CAS  Google Scholar 

  • ElShamy WM, Ernfors P (1996) A local action of neurotrophin-3 prevents the death of proliferating sensory neuron precursor cells. Neuron 16:963–972

    Article  PubMed  CAS  Google Scholar 

  • ElShamy WM, Fridvall LK, Ernfors P (1998) Growth arrest failure, G1 restriction point override, and S phase death of sensory precursor cells in the absence of neurotrophin-3. Neuron 21:1003–1015

    Article  PubMed  CAS  Google Scholar 

  • Ernfors P, Lee KF, Kucera J, Jaenisch R (1994) Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell 77:503–512

    Article  PubMed  CAS  Google Scholar 

  • Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411:342–348

    Article  PubMed  CAS  Google Scholar 

  • Farinas I, Yoshida CK, Backus C, Reichardt LF (1996) Lack of neurotrophin-3 results in death of spinal sensory neurons and premature differentiation of their precursors. Neuron 17:1065–1078

    Article  PubMed  CAS  Google Scholar 

  • Fulda S, Lutz W, Schwab M, Debatin KM (1999) MycN sensitizes neuroblastoma cells for drug-induced apoptosis. Oncogene 18:1479–1486

    Article  PubMed  CAS  Google Scholar 

  • Hogarty MD (2003) The requirement for evasion of programmed cell death in neuroblastomas with MYCN amplification. Cancer Lett 197:173–179

    Article  PubMed  CAS  Google Scholar 

  • Huang EJ, Zang K, Schmidt A, Saulys A, Xiang M, Reichardt LF (1999) POU domain factor Brn-3a controls the differentiation and survival of trigeminal neurons by regulating Trk receptor expression. Development 126:2869–2882

    PubMed  CAS  Google Scholar 

  • Inoue K, Ozaki S, Shiga T, Ito K, Masuda T, Okado N, Iseda T, Kawaguchi S, Ogawa M, Bae SC, Yamashita N, Itohara S, Kudo N, Ito Y (2002) Runx3 controls the axonal projection of proprioceptive dorsal root ganglion neurons. Nat Neurosci 5:946–954

    Article  PubMed  CAS  Google Scholar 

  • Kato K, Kanamori A, Wakamatsu Y, Sawai S, Kondoh H (1991) Tissue distribution of N-myc expression in the early organogenesis period of the mouse embryo. Dev Growth Differ 33:29–36

    Article  CAS  Google Scholar 

  • Kenney AM, Cole MD, Rowitch DH (2003) Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development 130:15–28

    Article  PubMed  CAS  Google Scholar 

  • Knoepfler PS, Cheng PF, Eisenman RN (2002) N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev 16:2699–2712

    Article  PubMed  CAS  Google Scholar 

  • Lawson SN, Biscoe TJ (1979) Development of mouse dorsal root ganglia: an autoradiographic and quantitative study. J Neurocytol 8:265–274

    Article  PubMed  CAS  Google Scholar 

  • Levanon D, Groner Y (2004) Structure and regulated expression of mammalian RUNX genes. Oncogene 23:4211–4219

    Article  PubMed  CAS  Google Scholar 

  • Levanon D, Brenner O, Negreanu V, Bettoun D, Woolf E, Eilam R, Lotem J, Gat U, Otto F, Speck N, Groner Y (2001) Spatial and temporal expression pattern of Runx3 (Aml2) and Runx1 (Aml1) indicates non-redundant functions during mouse embryogenesis. Mech Dev 109:413–417

    Article  PubMed  CAS  Google Scholar 

  • Levanon D, Bettoun D, Harris-Cerruti C, Woolf E, Negreanu V, Eilam R, Bernstein Y, Goldenberg D, Xiao C, Fliegauf M, Kremer E, Otto F, Brenner O, Lev-Tov A, Groner Y (2002) The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J 21:3454–3463

    Article  PubMed  CAS  Google Scholar 

  • Lothian C, Lendahl U (1997) An evolutionarily conserved region in the second intron of the human nestin gene directs gene expression to CNS progenitor cells and to early neural crest cells. Eur J Neurosci 9:452–462

    Article  PubMed  CAS  Google Scholar 

  • Ma Q, Fode C, Guillemot F, Anderson DJ (1999) Neurogenin1 and neurogenin2 control two distinct waves of neurogenesis in developing dorsal root ganglia. Genes Dev 13:1717–1728

    PubMed  CAS  Google Scholar 

  • McEvilly RJ, Erkman L, Luo L, Sawchenko PE, Ryan AF, Rosenfeld MG (1996) Requirement for Brn-3.0 in differentiation and survival of sensory and motor neurons. Nature 384:574–577

    Article  PubMed  CAS  Google Scholar 

  • Mountford P, Zevnik B, Duwel A, Nichols J, Li M, Dani C, Robertson M, Chambers I, Smith A (1994) Dicistronic targeting constructs: reporters and modifiers of mammalian gene expression. Proc Natl Acad Sci U S A 91:4303–4307

    Article  PubMed  CAS  Google Scholar 

  • Mugrauer G, Alt FW, Ekblom P (1988) N-myc proto-oncogene expression during organogenesis in the developing mouse as revealed by in situ hybridization. J Cell Biol 107:1325–1335

    Article  PubMed  CAS  Google Scholar 

  • Oliver TG, Grasfeder LL, Carroll AL, Kaiser C, Gillingham CL, Lin SM, Wickramasinghe R, Scott MP, Wechsler-Reya RJ (2003) Transcriptional profiling of the Sonic hedgehog response: a critical role for N-myc in proliferation of neuronal precursors. Proc Natl Acad Sci U S A 100:7331–7336

    Article  PubMed  CAS  Google Scholar 

  • Patel TD, Kramer I, Kucera J, Niederkofler V, Jessell TM, Arber S, Snider WD (2003) Peripheral NT3 signaling is required for ETS protein expression and central patterning of proprioceptive sensory afferents. Neuron 38:403–416

    Article  PubMed  CAS  Google Scholar 

  • Peverali FA, Orioli D, Tonon L, Ciana P, Bunone G, Negri M, Della-Valle G (1996) Retinoic acid-induced growth arrest and differentiation of neuroblastoma cells are counteracted by N-myc and enhanced by max overexpressions. Oncogene 12:457–462

    PubMed  CAS  Google Scholar 

  • Sawai S, Shimono A, Wakamatsu Y, Palmes C, Hanaoka K, Kondoh H (1993) Defects of embryonic organogenesis resulting from targeted disruption of the N-myc gene in the mouse. Development 117:1445–1455

    PubMed  CAS  Google Scholar 

  • Semsei I, Ma SY, Cutler RG (1989) Tissue and age specific expression of the myc proto-oncogene family throughout the life span of the C57BL/6J mouse strain. Oncogene 4:465–471

    PubMed  CAS  Google Scholar 

  • Snider WD, Wright DE (1996) Neurotrophins cause a new sensation. Neuron 16:229–232

    Article  PubMed  CAS  Google Scholar 

  • Sonnenberg-Riethmacher E, Miehe M, Stolt CC, Goerich DE, Wegner M, Riethmacher D (2001) Development and degeneration of dorsal root ganglia in the absence of the HMG-domain transcription factor Sox10. Mech Dev 109:253–265

    Article  PubMed  CAS  Google Scholar 

  • Stanton BR, Perkins AS, Tessarollo L, Sassoon DA, Parada LF (1992) Loss of N-myc function results in embryonic lethality and failure of the epithelial component of the embryo to develop. Genes Dev 6:2235–2247

    Article  PubMed  CAS  Google Scholar 

  • Stemple DL, Anderson DJ (1992) Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell 71:973–985

    Article  PubMed  CAS  Google Scholar 

  • Trumpp A, Refaeli Y, Oskarsson T, Gasser S, Murphy M, Martin GR, Bishop JM (2001) c-Myc regulates mammalian body size by controlling cell number but not cell size. Nature 414:768–773

    Article  PubMed  CAS  Google Scholar 

  • van Golen CM, Soules ME, Grauman AR, Feldman EL (2003) N-Myc overexpression leads to decreased beta1 integrin expression and increased apoptosis in human neuroblastoma cells. Oncogene 22:2664–2673

    Article  PubMed  CAS  Google Scholar 

  • Wakamatsu Y, Watanabe Y, Shimono A, Kondoh H (1993) Transition of localization of the N-Myc protein from nucleus to cytoplasm in differentiating neurons. Neuron 10:1–9

    Article  PubMed  CAS  Google Scholar 

  • Wakamatsu Y, Watanabe Y, Nakamura H, Kondoh H (1997) Regulation of the neural crest cell fate by N-myc: promotion of ventral migration and neuronal differentiation. Development 124:1953–1962

    PubMed  CAS  Google Scholar 

  • Wartiovaara K, Barnabe-Heider F, Miller FD, Kaplan DR (2002) N-myc promotes survival and induces S-phase entry of postmitotic sympathetic neurons. J Neurosci 22:815–824

    PubMed  CAS  Google Scholar 

  • Zimmerman KA, Yancopoulos GD, Collum RG, Smith RK, Kohl NE, Denis KA, Nau MM, Witte ON, Toran-Allerand D, Gee CE (1986) Differential expression of myc family genes during murine development. Nature 319:780–783

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrik Ernfors.

Additional information

This work was supported by the Swedish Medical Research Council, the Swedish Foundation for Strategic Research (CEDB grant), the Swedish Cancer Society, the EU Quality of Life programme (QLG3-CT-2000-01343), and the Petra and August Hedlunds Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, M., Hjerling-Leffler, J. & Ernfors, P. Increased progenitor proliferation and apoptotic cell death in the sensory lineage of mice overexpressing N-myc. Cell Tissue Res 323, 81–90 (2006). https://doi.org/10.1007/s00441-005-0011-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-0011-5

Keywords

Navigation